Applell BASIC Programming
~ With ProDOS

Customer Satisfaction

If you discover physical defects in the manuals distributed with an Apple product or in the
media on which a software product is distributed, Apple will replace the documentation
or media at no charge to you during the 90-day period after you purchased the product.

In addition, If Apple releases a corrective update to a software product during the 90-day
period after you purchased the software, Apple will replace the applicable diskettes and
documentation with the revised version at no charge to you during the six months after
the date of purchase.

In some countries the replacement period may be different; check with your authorized
Apple dealer. Return any item to be replaced with proof of purchase to Apple or an
authorized Apple dealer.

Limitation on Warranties
and Liability

Even though Apple has tested the software described in this manual and reviewed its
contents, neither Apple nor its software suppliers make any warranty or representation,
either express or implied, with respect to this manual or to the software described in this
manual, their quality, performance, merchantability, or fitness for any particular purpose.
As a result, this software and manual are sold “as is,” and you the purchaser are
assuming the entire risk as to their quality and performance. In no event will Apple or its
software suppliers be liable for direct, indirect, incidental, or consequential damages
resulting from any defect in the software or manual, even if they have been advised of the
possibility of such damages. In particular, they shall no have no liability for any programs
or data stored in or used with Apple products, including the costs of recovering or
reproducing these programs or data. Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or consequential damages, so the above
limitation or exclusion may not apply to you.

Copyright

This manual and the software (computer programs) described in it are copyrighted by
Apple or by Apple’s software suppliers, with all rights reserved. Under the copyright laws,
this manual or the programs may not be copied, in whole or part, without the written
consent of Apple, except in the normal use of the software or to make a backup copy.
This exception does not allow copies to be made for others, whether or not sold, but all of
the material purchased (with all backup copies) may be sold, given or loaned to another
person. Under the law, copying includes translating into another language.

You may use the software on any computer owned by you but ex tra copies cannot be
made for this purpose. For some products, a multi-use license may be purchased to allow
the software to be used on more than one computer owned by the purchaser, including a
shared-disk system. (Contact your authorized Apple dealer for information on multi-use
licenses.)

Product Revisions

Apple cannot guarantee that you will receive notice of a revision to the software
described in this manual, even if you have returned a registration card received with the
product. You should periodically check with your authorized Apple dealer.

©Apple Computer, Inc. 1983
20525 Mariani Avenue
Cupertino, California 95014

Apple and the Apple logo are registered trademarks of Apple Computer, Inc.
Thunderclock is a registered trademark of Thunderware, Inc.
Simultaneously published in the U.S.A. and Canada. All rights reserved.

Reorder Apple Product A2L2013

Table of Contents

List of Figures, Tables, and Programs

Preface

xvii The Parts of ProDOS
xviii Requirements for Using ProDOS
xviii This Manual’'s Organization

Introduction

3 Before You Start
3 Make a Spare Copy of Examples Disk
4 Starting ProDOS BASIC
6 The Startup Process
6 Other Ways to Start ProDOS BASIC
7 The HELP Command
8 For Example
10 ProDOS and DOS

Files and Commands
13 About This Chapter

13 Disks

14 Files

14 Directory Files

15 Volume Directory Files

17 Filenames

18 Pathnames

18 The Prefix and Partial Pathnames

Table of Contents

Xv

11

20 The General Form of ProDOS Commands
21 Options

22 Hexadecimal Notation

22 The Pathname Option—[pn]

23 The Slot Number Option—[,S#]
23 The Drive Number Option—[,D#]
24 In Summary

Using Files 25
27 About This Chapter

27 This Chapter’s Commands

29 The CAT and CATALOG Commands
32 The Options

32 For Example

34 What It All Means

37 The PREFIX Command

38 The Options

38 For Example

39 When You Use PREFIX in a Program
40 The CREATE Command

40 Directory File Size

41 The Options

41 For Example

42 The RENAME Command

42 The Options

43 For Example

43 The DELETE Command

44 The Options

44 For Example

44 The LOCK Command

45 The Options

45 For Example

46 The UNLOCK Command

46 The Options

46 For Example

BASIC Programs in Files 47
49 About This Chapter

49 BASIC Program Files

50 This Chapter’s Commands

50 The - (DASH) Command

51 The Options

52 For Example

Table of Contents

52
53
53
54
54
55
55
56
56

The RUN Command
The Options
For Example

The LOAD Command
The Options
For Example

The SAVE Command
The Options
For Example

Programming With ProDOS 59

61
61
64
64
65
67
67
68
68
69
70
70
72
72
73
73
74
74
75
76
76
76
77
78
79
80
80
81
81
82
82

About This Chapter
This Chapter’s Commands
What Is a Startup Disk?
The Anatomy of a Startup Disk
The Startup Process
Using ProDOS From Within a Program
For Example
Debugging Your Programs
Things to Watch Out For
Intercepting Messages to the Display Screen
Reading the Prefix
Handling Errors in a Program
Turning Off ONERR GOTO
Problems With ONERR GOTO
I/0 From BASIC Programs
The CHAIN Command
The Options
For Example
The STORE Command
The Options
The RESTORE Command
The Options
For Example
The PR# Command
Starting Using PR#
The Options
For Example
The IN# Command
The Options
The FRE Command
For Example

Table of Contents -

Text in Files

85
85
87
88
90
91
92
92
93
93
95
95
96
97
99
101
101
103
105
106
106
107
108
108
108
109
109
110
110
110
111
111
111
112
112

About This Chapter
This Chapter’s Commands

Sequential-Access Text Files: An Introduction
Random-Access Text Files: An Introduction
Sequential- and Random-Access Text Files

Position-in-the-File Pointer
Sequential Text Files
The Field
Storing Characters in Fields
A Simple Sequential Text File
Writing to a File Using PRINT
Reading Characters From a File
One Element Per Field
Multiple Elements Per Field
GET Characters From a File
Entering and Reading Text
A Program for Entering Text
A Program for Retrieving Text
The OPEN Command
The Options
For Example
The CLOSE Command
The Options
The WRITE Command
The Options
The READ Command
The Options
The APPEND Command
The Options
For Example
The FLUSH Command
The Options
For Example
The POSITION Command
The Options

Random-Access Text Files

115
115
116
116
117

About This Chapter
Random-Access Text Files
Record Length
Writing to a Record
Reading From a Record

Table of Contents

113

117
119
121
123
124
124
125
125
126
126
127
127
128
128
129
129
131
131
131
132

A Sample Program
Writing a Record
Reading a Record
Controlling the Program

The OPEN Command
The Options

The CLOSE Command
The Options

The WRITE Command
The Options
The End of File

The READ Command
The Options

The APPEND Command
The Options
For Example

The FLUSH Command
The Options

The POSITION Command
The Options

EXEC: Control From a Text File

135
136
138
138
139
140
141
141
142
142

About This Chapter
EXEC Demonstration
Create an EXEC File Using BASIC
Printing the Commands to the File
An All-Purpose EXEC Maker Program
Listing a BASIC Program to a File
Use EXEC to Combine Programs
Machine Language to BASIC
The EXEC Command
The Options

Binary Files

145
145
147
148
148
150
150
151
151

About This Chapter

This Chapter’s Commands
Binary Files

Binary Addresses

The Memory Address Options—[,A#] [,LE#] [,L#]

The File Position Option—[,B#]
The BRUN Command

The Options

For Example

Table of Contents

133

143

152 The BLOAD Command

152 The Options

153 For Example

153 Using BLOAD With Non-Binary Files
154 High-Resolution Graphics With ProDOS
154 Installing Machine-Language Routines
155 The BSAVE Command

155 The Options

156 For Example

157 The PR# and IN# Commands

158 The Options

158 For Example

159 What PR# and IN# Really Do

160 ProDOS and the Monitor

161 Using a Clock/Calendar Card

162 System Programs

162 Starting Up a System Program

Summary of ProDOS

167 Features of ProDOS

168 Filenames

168 Pathnames

169 Syntax

170 Summary of the Options
173 ProDOS Commands in Programs
173 Filing Commands

173 CATALOG and CAT

174 PREFIX

175 CREATE

176 RENAME

176 DELETE

177 LOCK

177 UNLOCK

178 BASIC Program Commands

178 — (DASH)
178 RUN

179 LOAD
180 SAVE

180 Programming Commands
180 CHAIN
181 STORE
182 RESTORE
182 PR#

183 IN#

184 FRE

Table of Contents

164

184 Text File Commands

184 OPEN
185 CLOSE
186 READ
186 WRITE
187 APPEND
188 FLUSH

188 POSITION
189 The EXEC Command

189 EXEC

190 Binary Commands

190 BRUN

191 BSAVE

192 BLOAD

DOS, ProDOS, and Applesoft 194

197 About This Appendix

197 DOS Disks and ProDOS Disks

198 Converting Files

199 The Differences Between DOS and ProDOS
200 File Organization and Names

201 DOS Commands That Went Away
202 Improved DOS Commands

204 New ProDOS Commands

206 Changes to Applesoft

206 HIMEM

206 HGR, HGR2, and TEXT

207 INPUT

207 IN# and PR#

207 TRACE and NOTRACE

207 FRE

Error Messages 209

211 Handling Errors From Applesoft

214 Discussion of ProDOS Errors

214 RANGE ERROR (Code 2)

214 NO DEVICE CONNECTED (Code 3)
215 WRITE PROTECTED (Code 4)

215 END OF DATA (Code 5)

217 PATH NOT FOUND (Code 6 or Code 7)
217 1/0 ERROR (Code 8)

218 DISK FULL (Code 9)

218 FILE LOCKED (Code 10)

218 INVALID OPTION (Code 11)

218 NO BUFFERS AVAILABLE (Code 12)

Table of Contents n

219 FILE TYPE MISMATCH (Code 13)

220 PROGRAM TOO LARGE (Code 14)

220 NOT DIRECT COMMAND (Code 15)

220 SYNTAX ERROR (Code 16)

220 DIRECTORY FULL (Code 17)

221 FILE NOT OPEN (Code 18)

221 DUPLICATE FILENAME (Code 19)

221 FILE BUSY (Code 20)

221 FILE(S) STILL OPEN (Code 21)

Extras 223

225 About This Appendix
225 Using the System Date and Time

226 Using TIME

226 Reading From ProDOS Directories

227 The Applesoft Programmer’s Assistant (APA)

228 Starting APA

229 Automatic Line Numbering

230 Turning Off Automatic Line Numbering

230 Renumbering a Program

233 Putting a Program On Hold

233 Merging Two Programs Into One

236 Deleting Remarks From a Program

236 Displaying Control Characters

236 Suppressing Control Characters

237 Calculating a Program’s Length

237 Producing a Cross-Reference Listing

238 Converting Decimal to Hex and Hex to Decimal

238 Clearing the APA Program From Memory

Glossary 241
Index 251

Table of Contents

Figures, Tables, Program§

List of Figures, Tables,
and Programs

Chapter 1: Introduction

Figure 1-1 The ProDOS Title Screen
Figure 1-2 The ProDOS Title Screen
Figure 1-3 The HELP Selection Screen
Figure 1-4 The CATALOG Help Screen

O oo uh

Chapter 2: Files and Commands

14 Figure 2-1 Files in a Directory

16 Figure 2-2 The Main Files on /EXAMPLES

18 Figure 2-3 The Structure of a ProDOS Pathname
19 Figure 2-4 A Sample Directory Structure

19 Table 2-1 The Prefix and Pathnames

24 Table 2-2 How ProDOS Forms a Pathname

Chapter 3: Using Files

29 Figure 3-1 Using Files

30 Figure 3-2 CAT and CATALOG

33 Figure 3-3 A Catalog of the /EXAMPLES Disk

34 Figure 3-4 A Catalog of /EXAMPLES/DIRECTORY
35 Table 3-1 The File Type Abbreviations

36 Table 3-2 The SUBTYPE Column

41 Table 3-3 The File Type Abbreviations

Chapter 4: BASIC Programs in Files
51 Figure 4-1 BASIC in Files

List of Figures, Tables, and Programs n

Chapter 5: Programming With ProDOS

62 Figure 5-1 CHAIN

62 Figure 5-2 STORE and RESTORE

63 Figure 5-3 PR# and IN#

66 Figure 5-4 The Startup Process

70 Table 5-1 Memory Locations for Error Handling
Programs

67 APPLESOFT STARTUP

71 ONERR.DEMO

74 PART1
75 PART2
77 E.S.P.

Chapter 6: Text in Files

87 Figure 6-1 Printing to a Scroll
89 Figure 6-2 Printing to a Notebook
95 Table 6-1 Printing to a Text File
96 Table 6-2 Reading From a Text File
Programs
93 LISTSELF
96 MAKE.FRUIT
97 GET.FRUIT
97 CONJUGATE
98 CONJUGEATEN
98 CONJUGEAT
101 MAKE.TEXT
103 GET.TEXT
111 APPEND.TEXT

Chapter 7: Random-Access Text Files

116 Figure 7-1 Sequential and Random-Access Text Files

118 Figure 7-2 Five Addresses in the File

119 Figure 7-3 Writing an Address to Record Five

121 Figure 7-4 Reading an Address From Record Five
Programs

117 ADDRESS

Chapter 8: EXEC: Control From a Text File

Programs
138 AWAY
138 MAKE.DOIT
140 CAPTURE
141 MACHINE LANGUAGE POKER

List of Figures, Tables, and Programs

146
147
149
161

169
172

199

21
212
213
214

227

Chapter 9: Binary Files

Figure 9-1 BRUN, BLOAD, and BSAVE

Figure 9-2 PR# and IN#

Figure 9-3 Memory Address Options A#, E#, and L#
Figure 9-4 ProDOS Date and Time Locations

Appendix A: Summary of ProDOS

Table A-1 ProDOS Command Options
Table A-2 The File Type Abbreviations

Appendix B: DOS, ProDOS, and Applesoft
Table B-1 File Conversion
Appendix C: Error Messages

Table C-1 Error Message Formats
Table C-2 ProDOS Error Codes

Table C-3 Errors by ProDOS Command
Table C-4 Applesoft Error Codes

Appendix D: Extras

Table D-1 Directory Line Composition

List of Figures, Tables, and Programs m

Preface

Preface

xvii The Parts of ProDOS
xviii Requirements for Using ProDOS
xviii This Manual’s Organization

Preface n

o

/

.
.

o

.
.

.
.

Pref;ce

Preface

ProDOS™ is Apple’s Professional Disk Operating System. A disk
operating system is a computer program that serves as a
housekeeper for the information stored on disks. It allows you to
place information on disks, rearrange the information that is
already on the disks, and retrieve information from the disks.
ProDOS lets you organize and use the information stored on all
Apple Il disks made by Apple Computer, Inc.

The Parts of ProDOS

The ProDOS software, or programs, comes on two disks. The first
disk, labeled ProDOS User’s Disk, contains programs that let you
arrange information on a disk and move information from one disk
to another. The programs on the User’s Disk are explained in the

ProDOS User’s Manual.

The second disk, labeled ProDOS BASIC Programming Examples,
holds the program that lets you run other programs, arrange
information that is already on the disk, and write your own BASIC
programs that use the disks to store information. This manual
explains the program on the Examples disk.

The ProDOS Technical Reference Manual explains what makes
ProDOS tick. An experienced programmer can use this
information to write machine-language programs that use
ProDOS.

By the Way: The catalog of your Examples disk may show dates and
times that are not the same as those pictured in this manual. Don’t
worry—it is just to show you what these catalogs look like.

The Parts of ProDOS m

e Requirements for Using ProDOS

To use ProDOS, you must have an Apple Il with at least 64K of
Random Access Memory (RAM), and with Applesoft in Read Only
Memory (ROM). If you have a standard Apple Il with Integer BASIC,
you must replace the Integer BASIC ROM with an Applesoft ROM.
You must also have at least one Disk Il drive; in addition, you can
have any other combination of disk drives.

By the Way: In this manual, the name Apple Il implies the Apple Il Plus
and the Apple lle. Because ProDOS does not support Integer BASIC,
ProDOS will notwork with BASIC on a standard Apple Il.

Before using this manual, you should be familiar with your Apple Il
and with the use of Applesoft BASIC. You should also work your
way through the Applesoft Tutorial before you read this manual. If
you have never used files that are grouped into directories, read
the ProDOS User’s Manual chapter on files, filenames, and
pathnames.

Remember: Keep the (CAPS LOCK)key depressed when you are typing
any of the ProDOS commands; they must be in uppercase letters. If you
type them in lowercase, you will receive a =% HTH< EERE message.

If you are experienced with DOS, the predecessor to ProDOS, read
Chapters 1 and 2 of this manual and then skip to the appendix that
describes the differences between DOS and ProDOS.

This Manual’s Organization

This manual is organized to be useful to as many people as
possible. Each chapter begins with a section describing the topics
it covers. If a chapter introduces new ProDOS commands, it also
has a section called “This Chapter’'s Commands.”’ Read this
section carefully; you can use its command summary to find
commands with which you are unfamiliar.

Notice that most of the command descriptions have three
sections. The first section tells you why you would want to use the
command, shows its form, or syntax, and gives a brief example.
The second section, “The Options,” gives a precise definition of
the different abilities of the command. The third section, *‘For
Example,” is a hands-on example of the command. If you learn
best by doing, try these examples.

Preface

Here is a quick summary of the chapters and appendixes in this
manual:

Chapter 1:

Chapter 2:

Chapter 3:

Chapter 4:

Chapter 5:

Chapter 6:

Chapter 7:

Chapter 8:

Chapter 9:

Appendix A:
Appendix B:
Appendix C:

Appendix D:

This Manual’s Organization

What you should know before using ProDOS.

What files are and how they are named. What
ProDOS commands are and how they are structured.

How to keep track of and manipulate the files on a
disk.

How to use programs that are stored on a disk.

How to write BASIC programs that use ProDOS
commands.

How to write BASIC programs that use sequential
text files.

How to write BASIC programs that use random-
access text files.

How to make files control the operation of your Apple
computer.

How to use binary programs and files, and the
Monitor. How to use a clock/calendar card.

A summary of ProDOS.
The differences between DOS and ProDOS.
Error messages.

Extra programs.

Chapter 1

Introduction

Before You Start
Make a Spare Copy of Examples Disk
Starting ProDOS BASIC

The Startup Process

Other Ways to Start ProDOS BASIC
The HELP Command

For Example
ProDOS and DOS

COONOO_WW

-h

Chapter 1: Introduction

Chapter 1

Introduction

Before You Start

This manual assumes that you already have some experience
using your Apple Il. You should be familiar with the Applesoft
Tutorial and at least Chapter 2 of the ProDOS User’s Manual.

As you read this manual, you should have in front of you:
® An assembled Apple Il with at least one disk drive
® The ProDOS User’s Manual

® The disks labeled ProDOS User’s Disk and ProDOS BASIC
Programming Examples, and one blank disk

® The Applesoft Tutorial (optional).

Make a Spare Copy of Examples Disk

While you learn to work with ProDOS, you are asked to do many
things with your Examples disk. Because the Examples disk that
comes with your ProDOS package is write-protected—that is, it
does not have a write-enable notch—you cannot do one very
important thing to this disk: you can’t write information on it.

Following the instructions in the section on backing up disks in the
ProDOS User’s Manual, transfer a copy of the information from the
original Examples disk to your blank disk, naming the new disk
/EXAMPLES . (This is the form that ProDOS recognizes—with a
slash before the name. You can use uppercase or lowercase letters
when you name a disk.) Write your name and /EXAMPLES on the
disk label; this is your personal copy of ProDOS. Now put the
original in a safe place; someday you may want to copy it again.

By the Way: Even if someone else has already made a copy of
/EXAMPLES, it is best to make one of your own. Some of the examples
in this manual ask you to change the files on the disk; if someone has
already done these examples, the disk will not be in its original form.

Make a Spare Copy of Examples Disk n

AR nResEs. Starting ProDOS BASIC

Place your copy of /EXAMPLES into drive 1 and close the drive
door. If your Apple Il is off, reach your left hand around to the back
of the case and turn it on. If your Apple Il is already on, reach
around the back, turn it off, then on again. The display fills up with
information that looks something like Figure 1-1.

Figure 1-1. The ProDOS Title
Screen

This display tells you that ProDOS was just placed in memory. Any
disk that contains a ProDOS program shows this display when it
starts up.

Chapter 1: Introduction

Figure 1-2. The ProDOS Title
Screen

What It Tells You
The startup disk name.

The type of Apple Il.

The amount of RAM in
your Apple Il.

Applesoft BASIC is in
Read Only Memory.

The contents of each
of your Apple II's slots.

After a few moments more, you see a display that looks something
like Figure 1-2. Its exact appearance depends on the type of
Apple Il system you are using, and the identity of the peripheral
cards that are connected to your system.

What the Display Says

This single display of text contains a wealth of information. It tells
you that the ProDOS program was brought into memory from the
disk named /EXAMPLES. This display also describes the setup of
your system: how much memory it has, which versions of BASIC
you can use, and the type of peripheral card installed in each of
your Apple II's peripheral connector slots.

By the Way: ProDOS BASIC requires at least 64K of memory. An
Apple lle always has 64K. Any Apple Il must have 48K of RAM and a
Language Card to be able to use ProDOS.

Starting ProDOS BASIC

A complete explanation of what
happens when you start ProDOS is
given in Chapter 5, “‘Programming
With ProDOS.”

The Startup Process

When you turn your Apple Il on, it tries to read information from
drive 1 of the disk controller card in the highest numbered slot
(usually slot 6) inside your Apple Il. If the disk is a ProDOS startup
disk, the ProDOS program is brought into memory. You see the
two displays of information described above, followed by the
BASIC prompt:

When you type a few lines of BASIC, you see that your Apple I
behaves just as it did without ProDOS or the disk drive—or so it
appears. The startup process actually added the ProDOS
commands to the BASIC commands to which you are accustomed.
There are now 23 new commands that you can type in, and several
of the old commands have been enhanced.

Warning

Even though the ProDOS commands look like BASIC commands (as you
will see), they do not always follow the same rules. For example, multiple
ProDOS commands, separated by colons, cannot be put on one line.

Other Ways to Start ProDOS BASIC

On an Apple lle, you can always start the system by pressing the

three keys—(&), (CONTROL), and (RESET)—all at the same time, and

then releasing them. On any Apple Il computer, you can start the
system by turning the computer off and then on again.

When you see one of the prompts (i or i), you can usually restart
the program on the disk in drive 1, slot 6, using the command

Chapter 1: Introduction

If you see the monitor prompt (i), and ¥ & doesn’t work, try

typing
(6)(CoNTROL)-(P)

If your disk controller card is installed in another slot, replace 6
with the slot’s number.

These commands are explained later. For now, remember that
using them is a good way to start over if things seem to be
hopelessly confused. Beware, however—these commands make
everything that is in memory disappear.

The HELP Command

If you are using ProDOS and can’t quite remember the exact form
of a command, you can add the HELP command by typing

while the Examples disk is in a drive. You need to type this
command only once. The HELP command remains in memory until
you turn off your computer or use another program (such as the
ProDOS Filer).

After you do this, you can get help with any ProDOS command by
simply typing

while the Examples disk is in a drive. Replace the word command
with any one of the ProDOS command words (that you’re going to
learn). If you just type

you will see the list of command words shown in Figure 1-3.

The HELP Command

What You See

Figure 1-3. The HELP Selection
Screen

Where Explained
Explanatory displays.
See Chapters 1, 2, 9.

See Chapter 3.

See Chapter 4.

See Chapter 5.

See Chapters 6, 7, 8.

See Chapter 9.

The left column lists the use for each group of commands. The
column on the right lists words you can enter in place of , the
name of the command you want to use. The first group of
commands is explanatory because the commands HELP HELP,
HELP SYNTAX, HELP BINARY, and HELP FILE do not give help
with specific commands; they display explanatory information.

Each group of commands corresponds to one or more chapters,
and within each group, the help commands are listed in the order
they appear in this manual.

For the HELP command to work, the files named HELP and
HELPSCREENS must be on the same disk. To get them onto a
disk other than /EXAMPLES, copy them using the ProDOS Filer.
This is explained in more detail later.

For Example

If your Apple Il is turned off, make sure /EXAMPLES is in drive 1;
then turn on the computer.

As soon as the prompt character appears on the display, type

Chapter 1: Introduction

Figure 1-4. The CATALOG Help
Screen

When the BASIC prompt returns, type

and you will see the list of commands shown in Figure 1-3. If you
want to see a typical help screen, type

and you see the display shown in Figure 1-4.

At the top of the display is the name of the command,
followed by the message + #. This message tells you
that the CATALOG command can be used in immediate mode (as
a command typed from the keyboard), and in deferred mode (as a
line in a program).

Next is a line that describes what the command does; one more
that shows the form, or syntax, of the command; two lines of
examples; and then an explanation of the command syntax. All the
abbreviations shown in the display will be much clearer after you
finish Chapter 2.

All the help screens use this same format with some variations due
to the requirements of each individual command.

The HELP Command n

Appendix B, which describes the
differences between ProDOS and DOS,
explains how to convert a program from
one format to another.

You can remove the HELP command by typing

This should be necessary only if you are writing an extremely large
BASIC program.

ProDOS and DOS

Because there are many programs available that are written using
DOS, it is important that you understand some of the differences
between ProDOS and DOS.

When you start up a ProDOS disk, the ProDOS program is placed
into memory. The ProDOS program is able to write to and read
from all disk drives made for Apple Il computers by Apple
Computer, Inc.

When you start up a DOS disk, the DOS program is placed into
memory. The DOS program can write to and read from Disk Il
drives only.

The information that ProDOS places on a disk cannot be read by
DOS; likewise, the information that DOS places on a disk cannot
be read by ProDOS. However, in some cases you can use the
program CONVERT on the User’s Disk (/USERS.DISK), described
in the ProDOS User’s Manual, to convert information from one
format to the other.

This means that you can use your existing DOS programs only on a
DOS-formatted disk unless they can be converted from DOS
format to ProDOS format. The general rule is that programs you
buy cannot be converted, and that programs you write yourself
can be. If a program uses only BASIC and DOS commands, it can
be converted. If it does any tricky PEEKs and POKEs, or if it uses
machine language at all, then it is likely that it cannot be
automatically converted.

Chapter 1: Introduction

Chapter 2

Files and Commands

13 About This Chapter

13 Disks

14 Files

14 Directory Files

15 Volume Directory Files

15 For Example

17 Filenames

17 Some Legal Filenames

17 Some lllegal Filenames

18 Pathnames

18 The Prefix and Partial Pathnames
20 For Example

20 The General Form of ProDOS Commands
21 Options

22 Hexadecimal Notation

22 The Pathname Option—[pn]

22 For Example—[pn]

23 The Slot Number Option—[,S#]
23 The Drive Number Option—[,D#]
24 For Example—[,S#] [,D#]

24 In Summary

Chapter 2: Files and Commands n

e

The ProDOS User’s Manual explains
how to format disks.

See Appendix B for more details on
DOS and ProDOS.

Chapter 2

Files and Commands

About This Chapter

The first part of this chapter is about files. It explains how ProDOS
arranges files on a disk, how files are named, and the terminology
used to refer to files.

The second part of the chapter explains how ProDOS commands
are structured. These commands let you make use of your files.

Some of the information in this chapter is explained by example:
as you read sections entitled ‘““For Example,” try the examples. For
these examples to work, ProDOS must be running, as explained in
Chapter 1, and the Examples disk must be in a drive.

Disks

The purpose of ProDOS is to let you use the information on disks.
It can communicate with all disk drives built by Apple Computer,
Inc. for Apple Il computers. Before ProDOS can use a disk, the
disk must be prepared for use, or formatted. You can format a
disk using the ProDOS Filer.

You'll find it convenient always to have an adequate supply of
empty ProDOS-formatted disks on hand, and to mark each disk
so that you know that it is ProDOS-formatted. Disks of other
formats (Apple Il Pascal, DOS) cannot be used by ProDOS.
Apple lll SOS-formatted disks can be used by ProDOS (although
the programs on them cannot).

=

Figure 2-1. Files in a Directory

Files

ProDOS lets you organize information into units of disk storage
known as files. Files can contain numbers, phone lists, letters,
pictures, programs, or any other type of information that your
Apple Il can use.

When a file is placed on a disk, it is assigned a name and a type.
When you want access to the information stored in a particular file,
refer to that file by its name. The file’s type indicates the kind of
information that the file contains. For example, there are text files,
program files, and a very important file type: directory files.

Directory Files

A directory file is just like any other file, but instead of containing a
program or text, it contains a list of other files and their locations
on the disk.

DIRECTORY

FILE1 FILE2 FILE3 FILE4

The directory shown in Figure 2-1 contains four files: FILE1, FILE2,
FILE3, and FILE4. Each of these files can be of any file type; thus

all, some, or none of them could be directory files. You can use up
to 64 levels of directories on a disk; however, more than five or six
levels of directories are difficult to use.

Chapter 2: Files and Commands

A volume directory is the main
directory file for the entire disk.

CAT is the short version of CATALOG.

Volume Directory Files

When you format a disk using the ProDOS Filer, a special type of
directory file is automatically placed on the disk. It is called a
volume directory, and it is the main directory file for the entire
disk.

A ProDOS volume directory

® is on every ProDOS-formatted disk.

® has a name, assigned when you format the disk. This name,
being associated with the entire contents of the disk, is also the
disk’s name. You should place it on the disk’s label.

® can contain up to 51 files.

® s the only file that you cannot create using the CREATE
command (or the ProDOS Filer command, MAKE DIRECTORY).

. ® isthe only file that you cannot remove from a disk (although you

can remove all the files in it). It is also the only file that you
cannot protect using the LOCK command.

If you have an Apple lle with an Extended 80-Column Text Card,
ProDOS places a volume directory file in the alternate 64K of RAM
on the card. This volume is named /RAM and it can be used just
like a small disk. Unlike a disk, however, the information in /RAM
disappears when you turn off your computer. You should use this
volume only for temporary storage of information. An example of
the use of /RAM is given in the following section.

For Example

To see the contents of the volume directory of the Examples
master disk, type the ProDOS command

and the display shown in Figure 2-2 appears.

By the Way: Your disk catalog may show dates and times that are not
the same as those pictured in this manual. Don’t worry—they are just
to show you what these catalogs look like.

Files

Figure 2-2. The Main Files on
/EXAMPLES

Some of these files are directory files: they contain the names and
locations of other files on the disk. You can recognize a directory
file by the abbreviation i I to the right of its filename in the
catalog.

If you have an Apple lle with an Extended 80-Column Text Card,
type the ProDOS command

ProDOS displays information similar to that shown above, but with
no filenames listed. /RAM is empty.

Chapter 2: Files and Commands

Filenames

Several ProDOS commands cause files to be created; each
requires that you assign the file a filename.

A ProDOS filename

® is composed of up to fifteen characters. The first must be a
letter; the rest can be any combination of uppercase or
lowercase letters (A-Z), digits (0-9), and periods (.). Lowercase
letters are automatically converted to uppercase, thus A and a
are equivalent.

® must be unique within its directory. There can be files by the
same name in different directories.
Some Legal Filenames

Here are a few legal filenames (assuming there aren’t already files
of the same name in the same directory).

A.LONG.FILENAME longest possible name
z shortest possible name
A.1DERFUL.NAME has letters, number, and periods

Note: Although you can’t use spaces in filenames, you can use periods
to separate words within a filename.
Some lllegal Filenames

Here are some illegal filenames and the reasons you can’t use
them.

3.BLIND.MICE begins with a number
.PRINTER begins with a period
SPACE RACE contains a space
BOOP,BETTY contains a comma

PEANUT.BUTTER.AND.PICKLES too many characters

Figure 2-3. The Structure of a ProDOS
Pathname

A partial pathname is a file’s pathname
with the prefix removed from the front
of it.

Pathnames

To find a file, ProDOS must know the path (from the disk’s volume
directory to the file) that it must follow to get to the file. The entire
path, from the volume directory to the file, is called the file’s
pathname. For example, the pathname of a file STAND in a
directory LAST in the volume directory CUSTER is
/CUSTER/LAST/STAND .

A ProDOS pathname

® is a series of filenames, preceded and separated by slashes

® has a volume directory filename as its first element

® is no more than 64 characters long, including slashes.

Figure 2-3 represents the structure of a pathname.

FILENAME

Figure 2-4 displays the directory structure of a disk containing files
that document part of the Indo-European family of languages.
Below it are a few of the many valid pathnames within this
directory structure.

In this example, INDO.EUROPEAN is the name of the disk
containing these files and also the name of the disk’s volume
directory.

The Prefix and Partial Pathnames

It is very time-consuming to type in an entire pathname every time
you use a file. By setting the prefix, a pathname that indicates a
directory file, you can refer to files in that directory, or to files that
can be reached through that directory, by using their partial
pathnames.

Chapter 2: Files and Commands

Figure 2-4. A Sample Directory
Structure

A Directory Structure

INDO.EUROPEAN

l

|
| l

BALTO.SLAVIC GERMANIC CELTIC ITALIC HELLENIC

N\

BALTIC SLAVIC

N\ |

GOIDELIC BRYTHONIC GREEK

NORTH.GERMANIC WEST.GERMANIC EAST.GERMANIC

Table 2-1. The Prefix and Pathnames

| N\

N

LATINO.FALISCAN OSCO.UMBRIAN

And Some Pathnames Within It
/INDO.EUROPEAN/HELLENIC/GREEK
/INDO.EUROPEAN/GERMANIC/WEST.GERMANIC
/INDO.EUROPEAN/ITALIC
/INDO.EUROPEAN/BALTO.SLAVIC/BALTIC

Table 2-1 shows the relationship among pathname, prefix, and
partial pathname.

You Want ProDOS to Find Current Prefix Is You Should Type
/CAROL/GHOSTS/XMAS.PAST /CAROL/ GHOSTS/XMAS.PAST
/CAROL/GHOSTS/XMAS.FUTURE /CAROL/GHOSTS/ XMAS.FUTURE
/MY.DISK/GAMES /YOUR.DISK/ /MY.DISK/GAMES

In the third column of Table 2-1, GHOSTS/XMAS.PAST and
XMAS.FUTURE are both partial pathnames; a full pathname is
formed by adding the current prefix. In the third example you want
to use /MY.DISK/, but the prefix is set to /YOUR.DISK/. In cases
like this, you must use the file’s full pathname (or change the value
of the prefix).

Make sure you understand the examples in Table 2-1. Once you

do, you will never have trouble with pathnames, partial pathnames,
or prefixes.

Files n

A ProDOS partial pathname

® s a filename, or a series of filenames separated by slashes

® is a pathname minus the current prefix

® is no more than 64 characters long, including slashes.

You can use the PREFIX command to set the prefix. Follow this
command by the pathname of a directory. Thus, before referring to

several files that are in the /EXAMPLES/CATALOG directory, you
can use the command

For Example

To set the prefix to the name of the directory /EXAMPLES/CATALOG
use the command

Now look at the contents of the CATALOG directory with the
command

Without any options, you can use the CAT or CATALOG command
to display the contents of the prefix directory. Now examine the
contents of the directory /EXAMPLES/CATALOG/DIRECTORY by
typing the command

In two commands, you saved 28 keystrokes!

The General Form of ProDOS Commands

This manual describes all the possible forms of each ProDOS
command by presenting a one-line description of the command.
This one-line description is called the command’s general form, or
syntax, and it looks something like this:

command [pn] [,S#] [,D#]
The word command represents any of the ProDOS commands.

The expressions [pn], [,S#], and [,D#] are the command’s options.
There are many options other than these three.

Chapter 2: Files and Commands

The three options shown above are called the pathname, slot, and
drive options, respectively; together they determine the name and
location of the file to be accessed. You can specify a file on any of
your disks using only the pathname option. The slot and drive
options give you additional control in accessing files.

Here is a specific instance of the CATALOG command that uses
the [pn], [,S#], and [,D#] options:

This command tells ProDOS to display the files contained in the
BOOKS directory (in this case pnis replaced by a partial
pathname), which is in the volume directory of the disk in slot 6,
drive 1.

Note the use of commas in the above example. Commas separate
the options; you can put spaces before or after the commas if you
wish.

Options

Sometimes an option is shown with brackets around it, sometimes
not. If an option does not have square brackets around it, you
must use that option each time you use the command, and you
must use it in the order shown by the command’s syntax. An
option that has square brackets around it may be included or
omitted, depending on what you want the command to do.
Bracketed options can be used in any order.

Warning
When you use an option, never type in the square brackets; they are only
there to tell you that the option is not required.

The characters within the brackets do three things: the comma
separates an option from its predecessor, the capital letter
identifies which option you are using, and whatever is after the
capital letter (usually #) stands for the value you can give that
option.

The letters pn should be replaced by a pathname or partial
pathname, as explained below, and # should be replaced by an
integer. The value of # can be a decimal integer or a hexadecimal
integer.

Options

By the Way: An additional notation is used later in the manual. Two
options separated by a vertical bar, |, are alternates. Use one or the
other, not both. You can read a bar as the English word or.

Hexadecimal Notation

You are never required to use hexadecimal numbers. The integer
in an option, represented by #, can be expressed in hexadecimal
notation by preceding the hexadecimal digits with a dollar sign.
For example, the decimal integer 254 can be expressed in
hexadecimal notation as $FE.

The Pathname Option—[pn]

[pn] This option indicates to ProDOS the name of the file that you
want to use. You can replace pn with a pathname or a partial
pathname.

If you use a pathname, ProDOS looks for the file with that
pathname.

If you use a partial pathname without the [,S#] and [,D#] options,
ProDOS looks for the file having the pathname formed by the
partial pathname added to the prefix. If the prefix is empty, the
name of the volume indicated by the last used values of [,S#] and
[,D#]is used in place of the prefix.

By the Way: You can access any file using just its pathname. The [,S#]
and [,D#] options are primarily for DOS compatibility. They are also
useful if you don’t remember a disk’s name.

For Example—[pn]

Here are a few ProDOS commands that use the pathname option:

Did you try these commands? If not, try them in the order
presented. How they work is explained in later chapters.

Chapter 2: Files and Commands

The Slot Number Option—[,S#]

[,S#] Include this option to tell ProDOS the slot that connects the
disk drive you want to access. Replace # with a slot
number from 1to 7.

When you use this option, the value specified by # becomes the
default slot number.

If you use this option without the drive option, drive 1 is assumed.

If this option is used after a pathname, ProDOS first looks for that
path in the indicated slot. If this option is used after a partial
pathname, ProDOS forms a pathname by adding the volume name
of the indicated volume to the partial pathname (the prefix is
ignored).

The Drive Number Option—[,D#]

[,LD#] Include this option to tell ProDOS the drive that contains
the disk you want to access. Replace # with drive number 1
or 2.

When you use this option, the value specified by # becomes the
default drive number. If you use the drive number option without a
slot number option, ProDOS looks for the drive in the default slot.

If this option is used after a pathname, ProDOS first looks for that
path in the indicated drive. If this option is used after a partial

pathname, ProDOS forms a pathname by adding the volume name
of the disk in the indicated slot and drive to the partial pathname.

Warning
If you use the slot number and driv
that is not there, you will get the
message.

indicate a drive

Options m

Table 2-2. How ProDOS Forms a
Pathname

For Example—[,S#][,D#]

Here are some ProDOS commands that use the [,S#] and [,D#]
options. Try them in order now with the /EXAMPLES disk in
drive 1.

displays the files in the PROGRAM directory of /EXAMPLES, the
disk in slot 6, drive 1.

sets the prefix to the name of the volume directory, slot 6, drive 1.

checks first in drive 2 for the /EXAMPLES volume, then in other
drives until it finds /EXAMPLES.

In Summary

Table 2-2 shows the pathname that ProDOS seeks for each
possible combination of the pathname, slot, and drive options.

[pn] [,S#] [,D#] Pathname Sought
= - - See command description

ppn - - pn = prefix + ppn*
ppn + + pn = vn + ppn
ppn + - pn =vn + ppn**
ppn - + pn = vn + ppn***
pn - - pn = pn
pn + + pn = pn

Key: + = option used
- = option not used
pn = pathname
ppn = partial pathname
vn = volume name of disk at S#, D#

* If the prefix is empty, the last used values of S# and D#
are used to determine a volume name.
** When only S# is given, drive 1 is assumed.
*** When only D# is given, the last value of S# is used.

Chapter 2: Files and Commands

Using Files

Chapter 3

27
27
29
32
32
34
34
35
35
35
36
36
36
37
37
38
38
39
40
40
a
a1
a2
42
43
43
a4
a4
a4
45
a5
46
46
46

About This Chapter

This Chapter’s Commands

The CAT and CATALOG Commands

The Options
For Example
What It All Means

The Directory’s Name

NAME (Filenames)
TYPE (File Types)
BLOCKS (File Sizes)

MODIFIED and CREATED (File Dates)
ENDFILE (Maximum File Sizes)

SUBTYPE (File Properties)

The Bottom Line
The PREFIX Command
The Options
For Example

When You Use PREFIX in a Program

The CREATE Command
Directory File Size
The Options
For Example

The RENAME Command
The Options
For Example

The DELETE Command
The Options
For Example

The LOCK Command
The Options
For Example

The UNLOCK Command
The Options
For Example

Chapter 3: Using Files

e

U A O

|
. . e
o - - - . D
- o e o e

Chapter 3

Using Files

(SRR About This Chapter

This chapter describes the ProDOS commands that let you keep
track of and manipulate the files on your disks. You can use these
commands

® to see what information is on a disk

® to create more room on a disk by throwing away obsolete
information

® to change the name of some information so that it is easier to
locate

® to protect some information from being accidentally destroyed.

Because you issue the commands described in this chapter from
the keyboard more frequently than from within programs, they are
described here before the chapter that explains the technique for
using ProDOS commands in programs. Remember that they can
all be used in programs.

This Chapter’s Commands

The ProDOS commands that let you manipulate files are
summarized below; each affects one file at a time. If you want to
perform operations on several or all of the files on a disk, use the
ProDOS Filer, described in the ProDOS User’s Manual.

This Chapter’s Commands

CATALOG List all the files in a directory

Use this command to place a list of all the files in the directory you
name onto the screen. It also displays other information about
each file.

PREFIX Set a directory to work in

Use this command to set the value of the prefix, that is, the
pathname that is automatically added to the beginning of any
partial pathname you use. You can also use it to display the prefix.
CREATE Create a new directory (or other file)

Use this command to create a new file with a name and type that
you specify. Although there are ways to create other file types, this
is the only way you can create a new directory.

RENAME Change a file’s name

Use this command to change the name of a file, but you cannot use
it to move the file from one directory to another.

DELETE Remove a file from a disk

Use this command to remove a file from its directory. Once you
delete a file, it is not possible to get it back.

LOCK Protect a file from being destroyed

Use this command to protect a file from being accidentally
destroyed. Once you lock a file, it cannot be renamed, deleted, or
otherwise changed until it is unlocked.

UNLOCK Unprotect a locked file

Use this command so you can rename, delete or otherwise change
a file that is locked.

Chapter 3: Using Files

Figure 3-1. Using Files

[

|

|
S

My name is
/NEWDIR

f

I ——

CREATE:
Make a
new directory file

My name is My name is 8 ‘ Prefix is
/DISKO) /MYDISK D /DISKO
RENAME: PREFIX:
Give a file a new name Set a directory to work in
S | LCATALOG: What files are
in a directory?
e
f! ! 3
My name is My name is @
DELETE: LOCK: UNLOCK:

Remove a file Protect a file

from its directory

Unprotect a file

The CAT and CATALOG Commands

To view the names and other characteristics of all the files in any
directory, use one of the two forms of the CATALOG command:

CAT [pn] [,S#] [,D#]
CATALOG [pn] [,S#] [,D#]

Display 40 columns
Display 80 columns

CAT displays a 40-column wide list of files. It includes the file’s
name, type, size, and modified date. CATALOG displays an
80-column wide list of files, which includes the same information,
plus the date that the file was created, and some technical
information. If you display the 80-column list on a 40-column wide
screen, each entry in the list takes up two lines. Figure 3-2 is a
comparison of the four displays that can be generated by this
command.

The CAT and CATALOG Commands

Figure 3-2. CAT and CATALOG

40-column CAT

80-column CAT

Chapter 3: Using Files

40-column CATALOG

80-column CATALOG

The CAT and CATALOG Commands

Display 80 columns.
-Display 40 columns.

For example, to see the files of jokes in the directory
/JOKES/BAD, you can use the command in either of the following
forms:

The Options

If you give the CAT or CATALOG command without any options,
the names and characteristics of all the files in the prefix directory
are displayed. If the prefix is empty, all the files in the volume
directory indicated by the last used values of [,S#] and [,D#] are
displayed.

[pn] The filename used in the command must indicate a
directory file or you see the ¥
message.

[,S#] If you use the slot and drive options without a filename,
[,D#] ProDOS displays a list of the files in the volume directory
of the disk in the specified drive.

For Example

To see a list of the files in the volume directory of the /EXAMPLES
disk, type

and you see the display shown in Figure 3-3.

Chapter 3: Using Files

Figure 3-3. A Catalog of the
/EXAMPLES Disk

Now, be sure that your /EXAMPLES disk is in slot 6, drive 1; type

and you see a 40-column list of the same directory. The first
example causes a display of the files in the volume directory of the
volume named /EXAMPLES, no matter which disk drive
/EXAMPLES is in. The second example causes a display of the
names of the files in the volume directory of any disk that is in the
drive connected to slot 6, drive 1.

Now look at the files in another directory. Notice that one of the
files displayed on the screen is named PROGRAMS. Type

and a new list of files appears on the screen. These are the files
stored on the /EXAMPLES disk in the directory named
PROGRAMS.

The CAT and CATALOG Commands n

Figure 3-4. A Catalog of
/EXAMPLES/DIRECTORY

What It All Means

By now you must be a little curious about the meaning of the
headings that appear on the screen each time you use the
CATALOG command. Wonder no more, for curiosity killed the
CAT. Type

and, if you have an 80-column display, you see the catalog shown
in Figure 3-4.

This is the 80-column version of this command. If you have a
40-column display, you see the same information, but each entry in
the list takes up two lines on the screen.

The Directory’s Name

The filename of the directory whose files you see in Figure 3-4
appears in the upper-left corner of the catalog. If it is a volume
directory, it is preceded by a slash; otherwise it is not.

Chapter 3: Using Files

Table 3-1. The File Type Abbreviations

The uses for each file type are explained
later in the manual.

A block is a 512-byte unit of disk space.

NAME (Filenames)

The name of each file in the directory is listed beneath the leftmost
heading, the one labeled If the named file is locked, its
filename is preceded by an asterisk.

TYPE (File Types)

The abbreviations beneath the heading labeled tell you the
type of each file in that directory. The file type that corresponds to
each abbreviation is shown in Table 3-1.

Abbreviation File Type
DIR Directory
TXT Text
BAS Applesoft Program
VAR Applesoft Variables
BIN Binary
REL Relocatable Code
* $F# User Defined
SYS ProDOS System File
SYS ProDOS System Program

* #is an integer from 1 to 8.

Notice that a file of each type is represented in the
/EXAMPLES/DIRECTORY directory. With ProDOS started up and
the /EXAMPLES disk in drive 1, type

to see this list of file type abbreviations.

BLOCKS (File Sizes)

- lists the number of blocks of disk space that
each file uses.

For directory files, this column lists the number of blocks used by
the directory file, but not the blocks used by the files in the
directory.

When you catalog a volume directory, the block use of the entire
disk is displayed at the bottom of the screen.

The CAT and CATALOG Commands ﬂ

Chapter 7 describes random-access
text files and explains how this might
happen.

Table 3-2. The SUBTYPE Column

MODIFIED and CREATED (File Dates)

These columns contain the dates and times at which you created

and last modified your files. The first half of the i

column is displayed by the CAT command; both columns are
displayed by the CATALOG command. These dates and times are
correct only if

e you have a Thunderclock™ or

® you have used the TIME program, described in Appendix D, or

e you have some other type of clock/calendar card, and have set
it up as explained in Chapter 9.

If there is a Thunderclock interface card in one of the Apple II's
slots, ProDOS recognizes the card and sets itself up to read the
date and time from the card.

ENDFILE (Maximum File Sizes)

i lists the number of bytes that each file will use if all the
disk space allotted to that file is filled (sometimes it is not).

SUBTYPE (File Properties)

& lists important properties of some types of
files. A single letter precedes each number in this column. The
letters used are shown in Table 3-2.

Letter Meaning

A Load Address: This is the memory address from
which a binary file (BIN) was saved. The address is
given in hexadecimal.

R Record Length: This is the size (in bytes) of each
element in a text file (TXT) or user defined file
($F#). The length is in decimal.

For example, binary files are usually placed in the same part of
memory each time they are used. For a binary file the property in
the - column starts with an A (for load Address) followed
by the memory address at which that binary file was last placed.
This type of attribute is discussed in Chapter 4, “BASIC Programs
in Files.”

Chapter 3: Using Files

The other type of property begins with an R (for Record length). It
specifies the size of each element of the file. This attribute is
explained in Chapter 6, “Text in Files.”

The Bottom Line

When you display the catalog of a directory, the bottom line of the
display describes how space on the volume is used.

is the number of unused blocks on the

is the number of full blocks on the disk, and
is the maximum number of blocks of information
that the disk can hold.

The PREFIX Command

If you are going to be referring to several files in a single directory,
the PREFIX command can save you some time. Use the PREFIX
command to set the prefix to the name of the directory the files are
in; you can then refer to the files by filename alone.

To assign a new value to the prefix, or to see the current value of
the prefix, use the command:

/PREFIX [pn] [,S#] [,D#]
For example, if the prefix is set to /EXAMPLES/, and you want to

use the file named /MAMMALS/RODENTS/BEAVER you must
refer to it by its full pathname. If you use the command

you can then refer to the file simply as BEAVER, and to the other
files in the directory as MOUSE, SQUIRREL, RAT, and so on.

When you start up /EXAMPLES or any other ProDOS disk, the
prefix is left empty, and the slot and drive defaults are set to
indicate the drive containing that disk. Whenever the prefix is
empty, ProDOS looks for files on the disk in the indicated slot and
drive.

The PREFIX Command ﬂ

The Options
If you use the PREFIX command without any options, the current
value of the prefix is displayed on the screen.

[on] pn must be the pathname or partial pathname of a
directory file. Unlike a normal pathname or partial

getaf

If you use a slash instead of a pathname, the value of the
prefix is left empty.

[,S#] If you do not specify a filename, but you do use the

[,D#] slot and drive options, the volume name of the indicated
disk is assigned to the prefix. If you have a controller for a
single disk drive in a slot, refer to it as drive 1 of that slot.

For Example

With ProDOS started up, and the ProDOS disk in drive 1, set the
prefix to indicate the /EXAMPLES volume directory using the
command

and then make sure the command worked right using the
command

Notice that the value of the prefix is printed out as

If the prefix value that you assign doesn’t end in a slash, ProDOS
automatically adds one. It does this so, when the prefix is attached
to a filename or partial pathname, a proper pathname is formed.

Chapter 3: Using Files

Refer to Chapter 5, “‘Programming
With ProDOS,” for details on reading
the prefix.

Verify that you can enter the prefix with a trailing slash by typing

and checking the result using the command

If you want to set the prefix to the name of the volume directory of
one of your disks, but you can’t quite remember the disk’s name,
use the slot and drive options to indicate the disk’s location. For
example,

sets the prefix to the value /EXAMPLES/. Try it. If your disk has a
long name, this form may be shorter than typing in the entire
volume name.

If you want to look at or use some of the programs that are
supplied with your /EXAMPLES disk, type the command

You can now see a list of the programs in this directory by typing

and you can refer to any one of them by filename alone, as in

When You Use PREFIX in a Program

When you use the PREFIX command with no options from within a
program, the value of the prefix is not displayed; it is set up so the
next INPUT statement in the program reads it.

The PREFIX Command m

The CREATE Command

The primary purpose of the CREATE command is to create

directory files within which you can place other files. Although you
can use this command to create files of all types, most of the other
file types are created automatically by other ProDOS commands.

A volume directory file can store the names and locations of up to
51 files. It isn’t really necessary to create more directory files
unless your disk will contain more than 51 files. However, a well
planned set of directories can make your files much easier to find
and use.

Be Prepared: Create your directory files before you have files to place
within them. It is much easier to place new files in a directory than to
move existing files from one directory to another. If you must do this,
use the file copy option of the ProDOS Filer.

You create a file by using the command

CREATE pn [, Ttype] [,S#] [,D#]

Notice that the CREATE command uses a new option, Ttype, that
determines the type of file to be created. If you do not use this
option, a directory file is created. To create a file of any other type,

you must use this option.

For example, you can create a directory file named
/BUDGET/CHILDREN by using the command

Directory File Size

The number of files that fit into a directory other than a volume
directory is limited only by the amount of space on the disk. The
size of a directory file is determined by the number of files it
contains.

The first block of disk space used by a directory can hold up to
12 files. Each subsequent block used by a directory can hold up to
13 files. Thus a directory with 27 files in it is three blocks long

(12 files in block 1, 13 in block 2, 2 in block 3).

Chapter 3: Using Files

Chapter 2 discusses the directory file
type; the other types are explained as
you need to know about them.

Table 3-3. The File Type Abbreviations

The Options

pn pn is the pathname or the partial pathname of the file to
be created. The file must not exist.

[,Ttype] type is a three-letter abbreviation that determines the
type of file to be created. The abbreviations of the
various file types are given in Table 3-3. You can see
these abbreviations by using the HELP FILE command.

Abbreviation File Type
DIR Directory
TXT Text
BAS Applesoft Program
VAR Applesoft Variables
BIN Binary
REL Relocatable Code
* $F# User Defined
SYS ProDOS System File
SYS ProDOS System Program

* # is an integer from 1 to 8.

[,S#] The slot option has its usual meaning.

[,LD#] The drive option has its usual meaning.

For Example

With ProDOS running and the /EXAMPLES disk in drive 1, set the
prefix to /EXAMPLES/PRACTICE/ with the command

We want to create a directory named
/EXAMPLES/PRACTICE/NEWDIR. Type the command

and listen to the /EXAMPLES disk whirring away. Now type

to see that the new directory exists. Notice that the catalog of files
shows that uses up 1 block of disk space.

The CREATE Command

The RENAME Command

To change the name of a file, use the RENAME command:
RENAME pn1,pn2 [,S#] [,D#]
This command changes the name of a file from the name indicated

by pn1 to the name indicated by pn2. The new hame must be in the
same directory as the old name. Thus you can use the command

to change the name of a test recipe from FUDGE to BROWNIES,
but you cannot use the command

to move your BROWNIES recipe from the TEST directory to the
EDIBLE directory. To move a file from one directory to another, use
the ProDOS Filer.

You cannot rename a file that is locked. Refer to the section “The
LOCK Command” in this chapter for further details.

The Options

pni,pn2 When you give a file (pn1) a new name (pn2), the new
name must be unlque If it already exists, you get the
{ name error message. If pni
does not exnst you get the error
message. If the two pathnames, pn1 and pn2, do not
indicate files in the same directory, you get a =

[,S#] The slot option has its usual meaning.

[,D#] The drive option has its usual meaning.

Chapter 3: Using Files

For Example

With the /EXAMPLES disk in drive 1, set the prefix to the name of
the directory containing practice files by typing

Now look at the files in the directory /EXAMPLES/PRACTICE by
typing

The list of files displayed on the screen includes the files
RENAME.ME.1, RENAME.ME.2 , and RENAME.ME.3 . To change
the name RENAME.ME.1 to RENAME.ME .4 , type

and ProDOS swiftly and silently changes the file’s name. Now type

to verify that the name was indeed changed. Now rename the file
LOCKED.UP.1 with the command

Whoops! This file is locked; its name cannot be changed until you
unlock it. If you have valuable files that you don’t want to alter or
rename accidentally, lock them. The sections on the LOCK and
UNLOCK commands in this chapter describe this method of file
protection.

The DELETE Command

To remove a file from a disk, use the command

DELETE pn [,S#] [,D#]

For example, you can remove the file /RESUME/DRAFT 12 from its
disk with the command

The file indicated by pn must be unlocked, and if it is a directory
file, it must be empty. After you delete a file there is no way to get it
back again.

The DELETE Command n

The Options

pn A pathname or partial pathname, pn, must be included in
the command; the indicated file must exist or you get a
k message.

[,S#] Theslotoption has its usual meaning.

[,LD#] The drive option has its usual meaning.

For Example

With ProDOS started up, and the /EXAMPLES disk in drive 1, set
the prefix to /EXAMPLES/PRACTICE/ with the command

To see the files in the PRACTICE directory, type the command

Included in the listed files are the files DELETE.ME.1,
DELETE.ME.2 , and DELETE.ME.3 .

Now delete the file /EXAMPLES/PRACTICE/DELETE.ME.1 using
the command

Try deleting the other DELETE.ME files using a full pathname, and
by setting the prefix to something else, /EXAMPLES/ for example,
and using a partial pathname.

Use the CAT command to verify that the deleted files are no longer
on the disk.

The LOCK Command

At times you will want to protect individual files from being
accidentally renamed, deleted, or altered. You can do this using

LOCK pn [,S#][,D#]

For example, you can lock the file /INVENTORY/NOTE.PADS by
typing

Chapter 3: Using Files

While a file is locked, it cannot be renamed, deleted or altered
Any attempt to change a locked file causes the :
error message to be displayed. To alter a locked file, you must first
unlock it with the UNLOCK command.

When you catalog the files in a directory, the locked files are
marked by asterisks to the left of their filenames.

You cannot lock a volume directory file. You can, however, protect
an entire flexible disk by covering its write-enable notch.

The Options

pn pn is the pathname or the partial pathname of the file
to be locked. You cannot lock a volume directory.

[,S#] The slot option has its usual meaning.

[,LD#] The drive option has its usual meaning.

For Example

With ProDOS started up and the /EXAMPLES disk in drive 1,
display a list of the files in the PRACTICE file using the command

Notice that the files LOCKED.UP.1 and LOCKED.UP.2 both have
asterisks by their file types, indicating that they are locked. First
set the prefix to /EXAMPLES/PRACTICE using the command

Next lock the file LOCK.ME.1 in the prefix directory with the
command

Use the CAT command to verify that the file is now locked.

The LOCK Command m

The UNLOCK Command

Before you can delete, rename, or otherwise change a locked file,
you must UNLOCK it using the command

UNLOCK pn [,S#] [,D#]

For example, to unlock the file /INVENTORY/NOTE.PADS so that
you can update the information it contains, use the command

You can UNLOCK any file except a volume directory file. Volume
directory files cannot be locked.

The Options
pn pnis the pathname or the partial pathname of the file to be
unlocked.

[,S#] The slot option has its usual meaning.

[LD#] The drive option has its usual meaning.

For Example

With ProDOS started up and the /EXAMPLES disk in drive 1,
display the list of the files in the PRACTICE file by using the
command

Notice that the files LOCKED.UP.1 and LOCKED.UP.2 both have
asterisks by their file types, indicating that they are locked. First
set the prefix to /EXAMPLES/PRACTICE/ using the command

Next unlock the file LOCKED.UP.1 in the prefix directory with the
command

Use the CAT command to verify that the file is now unlocked.

Chapter 3: Using Files

BASIC Programs in Files

Chapter 4

49
49
50
50
51
52
52
53
53
54
54
55
55
56
56

Chapter 4: BASIC Programs in Files

About This Chapter
BASIC Program Files
This Chapter’s Commands
The - (DASH) Command
The Options
For Example
The RUN Command
The Options
For Example
The LOAD Command
The Options
For Example
The SAVE Command
The Options
For Example

.
.

.
.

.
.

Chapter 4

BASIC Programs in Files

About This Chapter

This chapter describes the ProDOS commands that let you use the
BASIC programs on your disks. If all you want to do is run
programs that are already on your disks, pay special attention to
the — (DASH) command. This command moves any type of
program from a file on a disk into memory, and then starts it
running.

You can use the commands in this chapter

® to bring a program into memory and run it

® to bring a program into memory without running it

® to store the program that is currently in memory on a disk.

These commands are most useful when you are writing programs
or modifying programs that already exist.

BASIC Program Files

Although the Apple Il can use two dialects of the BASIC
language—Applesoft and Integer BASIC—ProDOS supports only
Applesoft. To use ProDOS, your Apple Il must have Applesoft
BASIC in Read Only Memory (ROM), and at least 64K of Random
Access Memory (RAM).

When you start up /EXAMPLES, it displays the message

telling you that the Applsoft language is indeed in Read Only
Memory.

BASIC Program Files m

I This Chapter’s Commands

The EXEC command is described in
Chapter 8.

Binary program execution: see also the
DASH command.

EXEC program: see Chapter 8.

This chapter’'s commands are summarized below. Each causes the
transfer of a program between memory and a disk file; the
direction of the transfer and the type of file transferred are
determined by the command you use.

- (DASH) Run any type of program

Use this command as a short form of the RUN, BRUN, and EXEC
commands. It causes a BASIC, binary, EXEC, or system program
to be transferred from a disk file into memory and then executed.

This is the command you use to run the ProDOS Filer without
starting up /USERS.DISK.

RUN Run a BASIC program from a file

Use this command to copy a BASIC program, type BAS, from a
disk file into memory to be executed automatically.

LOAD Get a BASIC program from a file

Use this command to copy a BASIC program, type BAS, from a
disk file into memory. Once the program is in memory, you can run
it, modify it, or save it in a disk file.

SAVE Save a BASIC program in a file

Use this command to save the BASIC program that is currently in
memory as a BASIC disk file, type BAS.

The - (DASH) Command

One of the more useful features of ProDOS is the — (DASH)
command. With this command you can bring into memory and run:
a BASIC program, a machine-language program, an EXEC
program, or a system program such as the ProDOS Filer.

To run a program of any one of these types, use the command

- pn [!S#] [1D#]

Chapter 4: BASIC Programs in Files

Figure 4-1. BASIC in Files

To learn more about the way programs
run, read the sections “The RUN
Command” in this chapter and “The
BRUN Command” in Chapter 9.

BASIC program in memory BASIC program

in a disk file

Both RUN and - cause
a program to be
loaded, then executed

When you run a system program, everything else in memory is
destroyed. If you are writing a BASIC program, be sure to save it
before running a system program.

For example, to run the ProDOS Filer, place the disk /USERS.DISK
in one of your disk drives and type

The Options

pn pn is the pathname or partial pathname of the file
containing the program you want to run. The file must be
of type BAS, BIN, TXT, or SYS. If the file is a binary file, it is
loaded to the address from which it was last saved. All
other file types cause the

[,S#] The slotoption hasits usual meaning.

[,LD#] The drive option has its usual meaning.

The - (DASH) Command | 51 |

The - (DASH) command is described
earlier in this chapter.

For Example

With ProDOS running, set the prefix to indicate the PROGRAMS
directory with the command

Look at the programs it contains by typing

Now try running a binary program (type BIN), a BASIC program
(type BAS), and an EXEC program (type TXT) by typing a dash (-)
followed by the filename of the program you want to run.

To run the Filer program (type SYS), place /USERS.DISK in a drive
and type

To return to ProDOS from the Filer, be sure that /EXAMPLES is in
a drlve typ (:)from the main menu, type the pathname

-, and press

5y

By the Way: If you want easy access to the Filer, use the Filer program
to copy the file /USERS.DISK/FILER to a disk that you usually have in a
drive. Then you can use the Filer by typing the DASH command rather
than starting up /USERS.DISK.

The RUN Command

To run an Applesoft program that is stored on a disk, use either of
the commands

RUN pn [,@#] [,S#] [,D#]
—pn[,S#][,D#]

Only the RUN command is described here.

When ProDOS sees the RUN command, it finds the file indicated
by pn, brings it into memory, and then runs it (beginning with
line @# if you use that option). For example, to run the BASIC
program named CHECKBOOK on a disk named /ACCOUNTS ,
use the command

Chapter 4: BASIC Proarams in Files

When a program ends, you can run it again by using the BASIC
command

Notice that in the general form of the RUN command, the filename
is not optional. When you type in a command, ProDOS checks to
see if it is a ProDOS command. If it isn’t, ProDOS gives the
command to BASIC. In this case, RUN without a filename is not a
valid ProDOS command; the command is passed to BASIC, and
BASIC runs the program in memory.

The Options

pn pn indicates the file to be run. The file to be run must be of
type BAS (Applesoft BASIC).

[,@#] If you use this option, the program begins running at the
line number specified by #. If you omit this option,
execution begins at the lowest numbered line in the
program.

[,S#] Theslotoption has its usual meaning.

[,D#] The drive option has its usual meaning.

For Example

With ProDOS started up, and the /EXAMPLES disk in drive 1, set
the prefix to indicate the /EXAMPLES/PROGRAMS volume
directory using the command

Look at the files in the PROGRAMS directory with the command

? Run the program by

Do you see a program named
typing

and the screen displays the words

The RUN Command m

A

The STORE command is described in
Chapter 5.

But if you run part of the program using the command

you just see

If you examine the program by typing

you’ll discover that line 20 contains that sentence.

The LOAD Command

To transfer a BASIC program from a file to memory, use the
command

LOAD pn [,S#][,D#]
This command is useful if you want to examine or modify a

program. It is not necessary to load a program before you run it;
the RUN command automatically loads a program into memory.

Warning

When a new program is loaded into memory, all records of the previous
program are erased from the Apple II’'s memory. If you want to save the
variables that were set by a previous program, use the STORE command.

When you LOAD the contents of a file into memory, the file on the
disk remains unchanged.

Once a program is loaded into memory, you can run it by simply
typing

The Options
pn pn must indicate an Applesoft program file (type BAS).

[,S#] The slot option has its usual meaning.

[,D#] The drive option has its usual meaning.

Chapter 4: BASIC Programs in Files

For Example

With ProDOS started up, and the /EXAMPLES disk in drive 1, set
the prefix to indicate the /EXAMPLES/PROGRAMS volume
directory using the command

i to remove any BASIC program from memory, then type
{ 7 just to prove that there is no BASIC program in memory.
Now, bring a new program into memory with the command

You hear the disk drive working away, then the BASIC prompt
returns. To see the program that was just loaded, type

It is important to realize that when you load a file, a copy of the file
is transferred from the disk to memory, but the original copy of the
file remains unchanged on the disk. For example, even though you
have already loaded WHIZBOOM, type the command

and you see that the file is still on the disk. To place the BASIC
program that is currently in memory into a file, use the SAVE
command.

The SAVE Command

To transfer the BASIC program that is currently in memory to a file
on a disk, use the command

SAVE pn [,S#] [,D#]
The file is saved as an Applesoft file (type BAS).

For example, to save the current program in a file named
/BEDTIME.STORIES/A.FRIENDLY.OGRE , use the command

If you save a program to a filename that already exists, the file
must not be locked, and it must be of the same type as the
program (type BAS).

The SAVE Command E

A Warning

If you are working with several different program files at once, and there is
a chance you will save a program to the wrong file, LOCK each file after
you save to it, and then UNLOCK it before you save to it again. This is the
best way to protect valuable BASIC programs.

By the Way: You can use the SAVE command to rearrange program
files. If you use the LOAD command to bring a program into memory,
you can then use the SAVE command to save it on a different disk (you
would then have two copies of the same file). Remember that when you
load a BASIC program from a file, the file itself does not change.

The Options

pn pn is the pathname or the partial pathname of the file in
which you want to save the current program. If pn already
exists, it must be unlocked.

[,S#] The slot option has its usual meaning.

[,LD#] The drive option has its usual meaning.

For Example

With ProDOS started up, and the /EXAMPLES disk in drive 1, set
the prefix to /EXAMPLES/PROGRAMS with the command

Now load a very short program into memory with the command

To see how short this program is, type the command

and you see before you a single line of program which reads

Chapter 4: BASIC Programs in Files

Even if you aren’t a programmer, you might guess that this
program does one and only one thing: it prints the words #
4 onto the screen. To see it do its very short

thing, type

Remember that the RUN command without a filename is not a
ProDOS command; it is a BASIC command that causes the
program that is currently in memory to be run.

Now for the fun part. Save the program to a different disk file, say
/EXAMPLES/PROGRAMS/ONE.LINER, with the command

You can see that the program has found its new home by typing

Notice that the first copy of the program, VERY.SHORT, is still on
the disk. Notice also that a program, even after a SAVE, remains in
memory. Use I to see that the program is still there.

If you have an Apple lle with an Extended 80-Column Text Card,
you can also save this program to a file on the volume named
/RAM. Type the command

You can see that this version of the program has been saved by
using the command

Notice how much faster /RAM is than a normal disk volume. It is
most useful when you are developing a large BASIC program and
you wish to save intermediate versions of it frequently.

The SAVE Command

Chapter 5

Programming With ProDOS

61
61
64
64
65
67
67
68
68

69
69
69
70
70
72
72
73
73
74
74
75
76
76
76
77
78
79
80
80
81
81
82
82

Chapter 5: Programming With ProDOS

About This Chapter
This Chapter’s Commands
What Is a Startup Disk?
The Anatomy of a Startup Disk
The Startup Process
Using ProDOS From Within a Program
For Example
Debugging Your Programs
Things to Watch Out For
Print Each ProDOS Command on a New Line
You Can’t Copy Control Characters
Some ProDOS Commands Work Only in Programs
Intercepting Messages to the Display Screen
Reading the Prefix
Handling Errors in a Program
Turning Off ONERR GOTO
Problems With ONERR GOTO
I/0 From BASIC Programs
The CHAIN Command
The Options
For Example
The STORE Command
The Options
The RESTORE Command
The Options
For Example
The PR# Command
Starting Using PR#
The Options
For Example
The IN# Command
The Options
The FRE Command
For Example

Programming With ProDOS

About This Chapter

This chapter contains an overview of programming with ProDOS. It
describes

the startup process and how to make a startup disk

® how to use ProDOS commands from within a program

® how to read the prefix from within a program

® how a program can handle errors

® how your programs can communicate with devices in slots.
You should have some experience with Applesoft BASIC. If you did
all the examples in the Applesoft Tutorial, you know enough. If you

didn’t, you should work your way through it before continuing with
this manual.

If you know Integer BASIC, but not Applesoft, read the appendix in
the Applesoft BASIC Programmer’s Reference Manual that
summarizes the differences between the two.

This Chapter’s Commands

The commands described in this chapter are summarized below.
This is not meant to be a complete description of each command;
it simply gives you an idea of the use of each command and of the
way the commands are interrelated.

CHAIN Run a program, but save the variables

Use this command to run a new program. Unlike RUN, it does not
cause the variables that are already in memory to be thrown away.

This Chapter’s Commands ﬂ

Figure 5-1. CHAIN

CHAIN:
Loads new program

| [P \\\?

BASIC BASIC (
Program Variables o
Disk m————— \\ U //
\>—- .-./
Replaces No change

STORE Save the variables in memory to a file

Use this command to save in a file all the BASIC variables that are
currently in memory. You can retrieve these variables by using the
RESTORE command.

RESTORE Get BASIC variables from a file

Use this command to discard the variables that are currently in
memory, and to bring in new variables from a file.

Figure 5-2. STORE and RESTORE

RESTORE:
Load variables

No change Replaces

—Memory

BASIC BASIC |/ O \
Program Variables \ o ,

Disk ————3 \ [J /

No change No change

STORE:
Save variables

Chapter 5: Programming With ProDOS

PR# Send output to a slot

Chapter 9 explains how to use PR# to Use this command to cause the characters that are normally
send output to a program. printed on the screen to be sent to a device, such as a printer, in a
slot.

IN# Get input from a slot
Chapter 9 explains how to use IN# to Use this command to cause characters to be read from a device,

get input from a program. such as an external terminal, in a slot instead of from the
Figure 5-3. PR# and IN# keyboard.

Slot N

Write characters
to screen Write characters

to slot N
/o,q,é 5

Screen

Program that PR# N
reads and writes

characters € IN# N

Q
N Read characters

fromslot N
Read characters

from keyboard

Keyboard

This Chapter’s Commands

A ProDOS startup disk contains all the
information needed to bring ProDOS
into memory and start it running.

Examples of STARTUP programs are
given later in this chapter.

What Is a Startup Disk?

Every Apple Il system has a particular disk drive known as the
system’s startup drive. The startup drive is connected to drive 1
of the disk controller card in the highest numbered slot. This
chapter assumes that your startup drive is connected to slot 6.

When you place a disk in the startup drive and turn on your
Apple Il, some disks cause the system to start up, other disks just
spin. The disks that cause the system to start up are known as
startup disks. A startup disk contains all the crucial information
that the Apple Il needs to bring a program from a disk into the
Apple II's memory and start a program running.

To make any ProDOS-formatted disk into a ProDOS startup disk,
you must copy the files containing the ProDOS program onto that
disk. When you turn on the Apple Il (or type F&# = from BASIC)
with a ProDOS startup disk in the startup drive, the ProDOS
program is automatically transferred from disk to memory and
run.

Once you have made other startup disks, you will no longer need
to use the /EXAMPLES disk each time you use ProDOS. All the
vital parts of ProDOS are stored on each startup disk. In addition,
by copying the files HELP and HELPSCREENS onto the startup
disk, you can use the help feature with other startup disks.

You can designate any program to be automatically run when a
ProDOS disk is started. You do so by putting the program in a file
named STARTUP. This file, which may contain a binary, BASIC, or
EXEC program, can contain a program that places a greeting
message on the screen, a favorite game, budgeting program, or
other program of your choice.

The Anatomy of a Startup Disk

A ProDOS'startup disk has three characteristics:

e |t is formatted using the ProDOS Filer.

® |t has the file PRODOS in its volume directory.

® |t has a file named BASIC.SYSTEM in its volume directory.

Chapter 5: Programming With ProDOS

To make a ProDOS startup disk:

1. Use the ProDOS Filer to format a disk.

2. Use the ProDOS Filer to copy the files PRODOS and
BASIC.SYSTEM from the /EXAMPLES disk to the newly
formatted disk.

3. If you want a specific program to be run when you start up that
disk, place it on the startup disk and name it STARTUP.

4. If you wish to use the help commands after you start up from
that disk, copy the files HELP and HELPSCREENS from the
/EXAMPLES disk to the new startup disk.

The Startup Process

When you start up your Apple Il with a proper ProDOS startup
disk, here is what happens:

1. The file named PRODOS, containing the most sophisticated
parts of ProDOS, is transferred from the startup disk into
memory and run.

2. ProDOS examines the peripheral connector slots and tries to
identify the type of device in each slot. It does this to determine
which slots contain disk drives that it may need to communicate
with. If one of the devices is a Thunderclock, ProDOS sets itself
up to read from the Thunderclock.

3. It then loads the program in the file named BASIC.SYSTEM.
This portion of ProDOS contains all the ProDOS commands.
This part of the program is run.

4. ProDOS BASIC looks for a file named STARTUP on the startup
disk. If it finds one, it runs it. If it does not find one, it displays
the following message:

What Is a Startup Disk?

Figure 5-4. The Startup Process Figure 5-4 illustrates the steps in the startup process.

ProDOS attaches routines
for disk drives, Thunderclock,
and /RAM (if 128K).

file is automatically placed

If there is a file named STARTUP
on the startup disk, the program in this
in memory and run.

> MoreRAM |

\4/4//
/7
j///
i,
|
\\
! \
\
\
N
N

Boot Disk

A boot disk must have the files
ProDOS and BASIC.SYSTEM on it.
These files containing ProDOS are
brought into memory (RAM) and run.

r User's RAM |E\“\ \\ SYSTEﬁ/\\ I
"[ROM l _) \ /ProDOS 7 O //
T
v
_/

2) ProDOS checks to see
which cards are in
the slots, how much
RAM there is, and
if Applesoft is in ROM.

ﬂ Chapter 5: Programming With ProDOS

There is a (CONTROL)-(D) between

and C.

CHRS$ (4) returns (CONTROL)-(D).

D$ contains (CONTROL)-(D).

Print a title.
Print a date.
Then list the volume directory.

”

Using ProDOS From Within a Program

Very often it’s useful to be able to use a ProDOS command from
within a BASIC program. For example, you can use ProDOS
commands in a program

® to print out a disk’s catalog from a STARTUP program
® to save your budget records in a file

® to save the condition of a game program for next time.

To use a ProDOS command from within a program, you must print

a string consisting of a (CONTROL)-(D) as the first thing on a printed
line, followed by the command. Using the CATALOG command as

an example, here is one way to put (CONTROL)-(D) in a string:

Right after you type the first quotation mark, type (CONTROL)-(D).
Although you can’t see it, it’s there.

Here is another way to put (CONTROL)-(D) in a string:

In this example, CHRS$ is an Applesoft function that returns the
character whose code is in parentheses. The number 4 is the
Apple II's code for (CONTROL)-(D). Note the semicolon after

CHRS$ (4). It is an optional separator between elements of a PRINT
list, and you may leave it out if you want.

If you set the value of a string variable, say D$, to (CONTROL)-(D) at
the beginning of a program, simply print [i# before each ProDOS
command in the program. This is the method used throughout the
manual (see line 40 in the example below).

For Example

Here is a version of a STARTUP program that prints a message on
the screen, and then prints out a list of the files on that disk. Type
and then enter this program.

Using ProDOS From Within a Program

D$ is (CONTROL)-(D).
Semicolon prevents (RETURN).
So this doesn’t work.

Now type o see how it works. If you want to preserve this
program, put a ProDOS-formatted disk in drive 1, and type

Debugging Your Programs

If you are a former DOS user, you will be pleased to discover that
the Applesoft commands TRACE and NOTRACE work with
ProDOS.

Use the TRACE command to cause the line number of each BASIC
program line that is executed to be printed on the screen. Use the
NOTRACE command to stop the printing of line numbers.

Things to Watch Out For

Three things you should watch out for while using ProDOS are
described in the following sections.

Print Each ProDOS Command on a New Line

In a ProDOS command given from within a program,

(CONTROL)-(D) must be preceded by (RETURN); that is, (CONTROL)-(D)

must be the first character on a printed line. Thus, the following
program will not work.

Instead of listing the volume directory, this program prints

If your program is unexpectedly printing ProDOS commands on
the screen—and never at the beginning of a new line—this is
probably why.

Notice: If your program contains a statement like this, with (RETURN)

preceding (CONTROL)-(D):

your program will only work with DOS and not with ProDOS.

Remember that (CONTROL)-(D) must be the first thing on a printed
line.

Chapter 5: Programming With ProDOS

Display WRITE help screen.

You Can’t Copy Control Characters

When you use to copy a BASIC statement, invisible control
characters are not copied.

Some ProDOS Commands Work Only In Programs

Most ProDOS commands can be given from the keyboard as
immediate commands or from within programs as deferred
commands. Some can only be used from within programs. They
are

APPEND
OPEN
POSITION
READ
WRITE

If you aren’t sure if a ProDOS command can be used from
immediate mode, simply use the HELP command. The upper-right
corner of each help screen tells how that command can be used
(as IMM[ediate] or DEF[erred] commands). For example, type

and you see that this command can only be used in a program.

Intercepting Messages to the Display Screen

You can use several ProDOS commands to cause ProDOS to send
information to the screen. The CATALOG command produces a
list of files, the PREFIX command without options displays the
prefix, and, if you use any command incorrectly, an error message
is sent to the screen.

ProDOS provides a way for your program to read the value of the
prefix or the number of an error message; these are explained
below.

Directory files can be opened and read as explained in
Appendix D.

Intercepting Messages to the Display Screen ﬂ

CHR$(4) is (CONTROL)-(D).
Command to display prefix.
Read the prefix into PR$.

Restore prefix to original value.

Table 5-1. Memory Locations for Error
Handling

Reading the Prefix

When you give the PREFIX command without options from the
keyboard, the current value of the prefix is displayed. When you
use the PREFIX command from within a program, ProDOS does
not display the value of the prefix. Instead, ProDOS places the
value of the prefix so the next INPUT statement in your program
will read it.

You might use this feature, for example, if your program changes
the value of the prefix, and you want to restore the prefix to its
former value before the program ends. Here is a program portion
that does that.

Rest of program which changes the value of the prefix

Notice the way this feature works: You give the prefix command
without any options, and input the prefix into any string variable, in
this case, PR$. When you want to restore the prefix, the old value
is in the string.

Handling Errors in a Program

An error in an Applesoft program normally causes an error
message to appear on the display screen. If your program uses the
ONERR GOTO statement, Applesoft puts an error number in
memory, and then goes to the line specified in the ONERR GOTO
statement.

ProDOS follows the same procedure. When it encounters an error,
it places the error number in memory, and then tells Applesoft that
it found an error. ProDOS uses error numbers not used by
Applesoft. Table 5-1 lists the numbers that are useful to a program
trying to catch ProDOS or Applesoft errors.

Number How to Read It
Error Number PEEK (222)
Line Number PEEK (218) + PEEK (219) * 256

Chapter 5: Programming With ProDOS

D$ is (CONTROL)-(D).

Error handled at line 100.
Read a filename into F$.
Read the new name into N$.
Give the RENAME command.
No error; program ends.

If it is not a FILE LOCKED error (10), go
to line 200.

No, don’t rename the file.

Yes, unlock the file, rename it, and then
lock it again.

All done.

For example, you cannot rename a file if it is locked. The error
number for i is 10. This small program lets you
rename a file whether or not it is locked. Using ONERR GOTO, it
detects the error, gives you a chance to unlock the
file, then it tries to rename the file again. It also displays the error
number and line number of any other error that might occur.

Line 20 causes line 100 to be called if there is any error.

Line 100 calls line 200 if there’s an error other than ¥

This program is saved with the name
/EXAMPLES/PROGRAMS/ONERR.DEMO . Try it on a few of your
locked files.

Its operation is quite simple. Line 30 reads the name of a file to be
renamed into F$. In line 40 it reads the new name into N$. In

line 50 the RENAME command is given. If there is no error, the file
is renamed, and the program ends. If there is an error, the ONERR
statement in line 20 says that the program should look to line 100
for the part of the program that treats the error.

Intercepting Messages to the Display Screen

A complete list of the ProDOS and
Applesoft errors is in Appendix C.

Refer to the Applesoft BASIC
Programmer’s Reference Manual for
more details on ONERR GOTO.

This ONERR fixing routine is more fully
explained in the Applesoft BASIC
Programmer’s Reference Manual.

Line 100 checks location 222 to make sure that
error (error number 10) occurred. Ifit was not a N
error, the program goes to lines 200 and 210, which display the

number of the error and the number of the line where it occurred.

If the file was locked, line 130 unlocks it, line 140 renames it, and
line 150 locks it up again—under its new name.

Turning Off ONERR GOTO

On occasion you will use ONERR GOTO to detect one error, and it
will be triggered by another error. To prevent this, you must turn
off the ONERR GOTO feature. To do this, use the statement

in your program when you want ONERR GOTO to be disabled. It is
a good idea to use ONERR GOTO in the statement preceding the
one that might generate the error, and to turn it off in the following
statement.

Problems With ONERR GOTO

As described in the Applesoft BASIC Programmer’s Reference
Manual, ONERR GOTO does not work quite as it should. If you
encounter apparent problems with ONERR GOTO, include the
following lines in your program:

Then, within your error-handling routine, use the call

to activate this little ONERR fixer. Of course, you can change the
numbers of any of these lines. Just make sure that line 1is run
before line 200 is.

Chapter 5: Programming With ProDOS

I /o From BASIC Programs

The remainder of the commands in this chapter enhance your
Apple II's ability to communicate with other BASIC programs and
with devices such as printers and disk drives that are in the
Apple II’'s peripheral connector slots. Such communication is
referred to as the input of information and the output of
information, collectively known as input/output or, more

simply, 1/0.

You can use the CHAIN command to let one program run another
without destroying the variables that are currently in memory.
Using CHAIN, two programs in separate files can use the same set
of variables, or one very large program can be divided into more
than one part.

With the STORE command you can save the names and values of
all your program’s variables. If a program stores all its variables
before ending, the next time you run it you can use RESTORE to
start up exactly where it left off.

You can use the PR# and IN# commands to let BASIC
communicate with devices that are in any of the Apple II's slots.

Finally, you can use the FRE command to access the fast
housekeeping routines that ProDOS has.

The CHAIN Command

If a BASIC program is too big to fit entirely in memory, you can use
the CHAIN command to bring parts of the program into memory
and then run each part, one at a time. All variables used, and all
files opened (see the next chapter) by the current part of the
program are available to the parts of the program connected by
the CHAIN command.

To run part of a program without throwing away the current
variables or closing the open files, use the command

CHAIN pn [,@#] [,S#] [,D#]
When you chain from one part of a program to another, the first

part of the program is removed from memory. To use the first part
of the program again, use the CHAIN command again.

The CHAIN Command ﬂ

Bring PART1 into memory.
Display it.

D$ is (CONTROL)-(D).
Set the prefix.
Set a string value
and say that it’s been set.
Chain to line 35 of PART2.

Execution of the second program begins at the line indicated
by [,@#], the line number parameter. If you don’t use [,@#],
execution begins at the lowest numbered line in the program.

Warning

A chained portion of the program cannot dimension an array used by a
previous part of the program.

The Options

pn pn indicates the file containing the BASIC program you
want to run next.

[,@#] If you use this option, the new program begins running at
the line number specified by #. If the specified line does
not exist, the next highest line in the program is run. If you
omit this option, execution begins at the lowest numbered
line in the program.

[,S#] The slot option has its usual meaning.

[,D#] The drive option has its usual meaning.

For Example

Here is an example of a program, PART1, that uses the CHAIN
command with the line number option to connect a second
program part, PART2 . Both parts are already typed in for you. Set
the prefix to /EXAMPLES/PROGRAMS using the command

Look at PART1 and list it using the commands

You see

Chapter 5: Programming With ProDOS

Bring PART2 into memory.
Display it.

This shouldn’t be printed.

If it is, skip 35.

This should be printed
and so should this.

An example using the STORE command
is at the end of the section on the
RESTORE command.

The experiment here is to see if the variable I$ retains the value set
by PART1 when it is printed out by PART2 . Now type

and you see

If the CHAIN command in line 50 of PART1 works properly, line 35
should be the flrst I|ne that |s executed and the statement

F =1 R] : . should be printed on the
screen. If the line number option does not work properly, the first
line in the program (line 15) will be executed first, and the
statement, i . will be displayed.

Line 45 displays the line f
if the variables are preserved and sumply displays
if the variable I$ is not preserved.

Place your bets on what will be printed out, and then type

The STORE Command

The STORE command allows you to save to a disk file the names
and values of all the variables that are used by a BASIC program.
You can retrieve the variables using the RESTORE command.

A game program, for example, can contain the STORE command
to save the condition of a game when you stop playing. The next
time you play the game, the program can RESTORE the variables
from the file, and you can continue where you left off. You can also
use the STORE command to create a set of information that is
used by more than one program.

To store the current variables in a file use the command

STORE pn [,S#][,D#]

The STORE Command

The STORE command creates and places the variables in a file of
type VAR.

Warning

Because ProDOS puts the variables in a compact form before it stores
them, there may be a considerable time delay from when you issue the
STORE command to when the disk drive starts spinning.

The Options

pn pn is the pathname or partial pathname of the file in which
to store the variables. If the file doesn’t already exist, a file
of type VAR is created.

[,S#] The slot option has its usual meaning.
[,D#] The drive option has its usual meaning.

The RESTORE Command

The RESTORE command allows you to get from a disk file the
names and values of a set of variables to be used by a BASIC
program. Only a file created by the STORE command can be
retrieved by the RESTORE command.

To retrieve a set of variables from a file, use the command
RESTORE pn [,S#] [,D#]

This command clears all currently defined variables from memory
before bringing in the new ones.

The Options

pn pn is the pathname or partial pathname o1 the file
containing the BASIC variables. The file must be of type
VAR.

[,S#] Theslotoption has its usual meaning.

[,LD#] The drive option has its usual meaning.

Chapter 5: Programming With ProDOS

For Example

Your /EXAMPLES disk has a number guessing program called
E.S.P. on it. Set the prefix to /EXAMPLES/PROGRAMS by typing

Then run the program by typing

Play with it for a while, and then type (Q) to quit. Type

again, and guess a number. Notice that the overall score starts
at 0 again. You are going to use the STORE and RESTORE
commands to make this program remember your overall score
from one game to the next. Type (Q) to exit the game.

Display the program on the screen using the BASIC command

Your task is to add the STORE and RESTORE commands to the
program. Since RESTORE clears all the variables that are currently
defined, it is a good idea to use this command as the first line in a
program. However, before including the RESTORE command in
the program, you must create a file from which it can read
variables.

Look at the last line in the program

This, the last line executed before the program ends, is the best
place to place a STORE command. Type

and then list the program again to be sure that the new lines are
correct. Now when you run the program, the STORE command will
create the new file ESPVARIABLES. Then you can add the
RESTORE command to the program. Type

The RESTORE Command

and play the game for as long as you like; then press (a). Notice
that the disk drive whirs as the variable file is placed on the disk.

Type

to verify that the new file was created. Now look at the first few
lines of the program by typing

Add the line

Once again type

to play the game. Press any number, then look at the overall score.
The game now remembers the total score of all the previous times
you played the game. To save this game in the PROGRAMS
directory, use the command

Do you have ESP?

The PR# Command

Your Apple Il usually sends characters to the display screen. You
can use the PR# command to change the destination of
characters, sending them to a device in one of the Apple II's
peripheral connector slots instead of to the screen. The syntax is

PR# snum
in which snum is a slot number from 0 to 7. For example, if your

Apple Il has an interface card for a printer installed in slot 1, the
command

Chapter 5: Programming With ProDOS

Refer to Chapter 9 for more details on
using the PR# command to output
characters.

causes subsequent printed characters to be sent to the printer. To
restore the screen as the destination for printed characters, use
the command

Warning
If you are using an 80-column card, make sure it is turned off before you
issue another PR# command. On an Apple lle, type

(CONTROL)-(Q])to turn off the 80-column card. For other types of 80-
column cards, refer to the card’s documentation to discover how to turn it
off.

Warning

Always remember to precede the PR# command with a (CONTROL)-(D)
when you use it in a program. If you don’t, ProDOS ignores the command
entirely. If you think that your program isn’t carrying out the PR# and IN#
commands correctly, this could be the reason.

Starting Using PR#

If your Apple Il has a disk controller card in one of its slots, you can
start up the disk in that card’s drive 1 with the command

PR# snum

in which snum is the number of the slot containing the card. It may
seem to you that this command only sets up the disk to receive
future characters, but PR# actually does a little more.

When you use the PR# command to send output to a peripheral
card in a slot, ProDOS tries to run the program in that card’s Read
Only Memory chip (most cards have them). The program in the
ROM of a disk controller card automatically tries to read
information from the disk; this is, of course, exactly what starting
up the system is.

You can also use the PR# command to call a machine-language
program that is to perform the output of characters.

The PR# Command

The Options

snum snum is the number of the slot to which you want to write.
If snum is in the range 1 to 7, inclusive, future characters
are sent to the device in that slot. If snum is 0O, future
characters are sent to the screen. All other values of snum
are invalid and must not be used.

For Example

First save any BASIC program that might be in memory, then place
your /EXAMPLES disk in drive 1, close the door, and type

replacing snum with the number of the slot (probably 6) to which
your Disk Il controller card is connected. Disk drive 1 whirs and
clicks and then ProDOS starts up as if you just turned the Apple Il
on.

If a printer is connected to one of the Apple II's slots, you can try
this example too. First, turn on the printer. Then, replacing snum
with the number of the slot to which your printer is connected, type

The printer makes a little clicking noise. Like the disk controller
card, the printer’s card has a ROM chip that contains an
initialization program. The printer card’s program initializes the
printer to a previously set condition, placing the head or
printwheel to the beginning of the line, and doing whatever else
needs to be done. Now type

and the contents of the /EXAMPLES volume directory are printed.
Play around with a few BASIC commands. You will find that
everything that is normally printed to the screen is now printed on
the printer. To return output of characters to the screen, type

If your system has an 80-column card, you can now turn it back on.

Chapter 5: Programming With ProDOS

Refer to the section on PR# for more
details on starting up. Chapter 9
contains an explanation of using IN# to
input characters.

The INZ Command

Your Apple Il usually reads characters from the keyboard. You can
use the IN# command to change the source of characters from the
keyboard to a device in one of the Apple II's peripheral connector
slots. The syntax of the command is

IN# snum
in which snum is a slot number from 0 to 7. For example, if your

Apple Il has an external terminal connected through slot 3, the
command

causes subsequent characters to be read from the terminal. To
restore the Apple II's keyboard as the source for input characters,
use the command

Warning

Always remember to precede the IN# command with a (CONTROL)-(D)
when you use it in a program. If you don’t, ProDOS ignores the command
entirely.

You can start up the disk in drive 1 of slot snum by typing the
command

IN# can also be used to call a machine-language program that is
to perform the character input operation.

The Options

snum snum is the number of the slot from which you want to
read. If snum is in the range 1 to 7, inclusive, future
characters are read from the device in that slot. If shum
is 0, future characters are read from the Apple II's
keyboard. All other values of shum are invalid and must
not be used.

The IN# Command m

e The FRE Command

To give access to the fast housekeeping routines that ProDOS has,
you can use the FRE command in this form

For Example

You can use the FRE command in a program in the same format as
any disk 1/0 command

By the Wa‘y The Applesoft command FF 1T FEE > still works, but
it uses the slow Applesoft housekeepmg routines mstead of the faster
ProDOS routines.

ﬂ Chapter 5: Programming With ProDOS

Chapter 6

Text in Files

85
85
87
88
90
91
92
92
93
93
95
95
96
97
99
101
101
103
105
106
106
106
107
108
108
108
109
109
110
110
110
111
111
111
112
112

About This Chapter
This Chapter’'s Commands
Sequential-Access Text Files: An Introduction
Random-Access Text Files: An Introduction
Sequential- and Random-Access Text Files
Position-in-the-File Pointer
Sequential Text Files
The Field
Storing Characters in Fields
A Simple Sequential Text File
Writing to a File Using PRINT
Reading Characters From a File
One Element Per Field
Multiple Elements Per Field
GET Characters From a File
Entering and Reading Text
A Program for Entering Text
A Program for Retrieving Text
The OPEN Command
The Options
For Example
Delete Before Opening
The CLOSE Command
The Options
The WRITE Command
The Options
The READ Command
The Options
The APPEND Command
The Options
For Example
The FLUSH Command
The Options
For Example
The POSITION Command
The Options

Chapter 6: Text in Files

.
.

L
.
.
.
.
. . -
.

.

.
.

. .,? ‘Z#gé'@
. . .
. .
L -

Chapter 6

Text in Files

About This Chapter

This chapter introduces you to the use of ProDOS text files. It
describes how to create them, how to place information in them,
and how to take information from them.

The first part of the chapter is an introduction to the two types of
text files: sequential-access text files, and random-access text
files. The next part of the chapter teaches you how to write
programs that use sequential-access text files. The last part of the
chapter is a description of the text file commands as used with
sequential-access text files.

The next chapter teaches you how to write programs that use
random-access text files. It is a continuation of this chapter, so
read this chapter first.

You might use the commands described in this chapter

® in a program that keeps a list of words for a guessing game
® in a program that saves and retrieves text

® in a program that saves and analyzes experimental data.

This Chapter’s Commands

The commands in this chapter are summarized below. These are
all the commands you need to use ProDOS text files.

OPEN Prepare to use a file
You must use this command before you use a text file. If the file

mentioned does not exist, a text file is created. If the file does
exist, OPEN checks to see that the file is a text file.

This Chapter’s Commands E

A field is a sequence of characters that
ends with a carriage return.

CLOSE Stop using a file

Use this command to tell ProDOS that you have finished reading
from and writing to a file. Before ending, your program must close
all the files that it opened.

WRITE Prepare a file for writing

Use this command to tell ProDOS the file you want to write to and
where in the file you want to start writing. You can use the WRITE
command only after the file is opened; it remains in effect until you
give the next ProDOS command.

READ Prepare a file for reading

Use this command to tell ProDOS the file you want to read and
where in the file you want to start reading. You can use the READ
command only after the file is opened; it remains in effect until you
give the next ProDOS command.

APPEND Prepare to write to the end of a file

Use this command to write data starting at the end of a text file. It
opens the file, positions to the end of the file, and then writes to
the file.

FLUSH Send all unwritten data to the file

ProDOS writes characters to files in groups, not one by one.
FLUSH causes all characters that are not yet written to a file to be
sent. After you use FLUSH, you can be sure that the characters in
the file are identical to those that the program has printed. The
CLOSE command does a FLUSH before it actually closes a file.

POSITION Read and discard fields in a file

This command lets you skip a specified number of fields in the text
file before you read or write more information.

Of These Commands: Only CLOSE and FLUSH can be used in
immediate mode. All can be used in programs.

Chapter 6: Text in Files

In this section, a scroll models a
sequential text file.

Figure 6-1. Printing to a Scroll

=

Sequential-Access Text Files:
An Introduction

You can think of a disk full of sequential-access text files as a
collection of scrolls. Each scroll, like the sequential text file it
models, can contain an unlimited number of lines of text. The
analogy is appropriate because in both cases you must search
through line by line to locate a particular line of text—there are no
pages or markers to make the search faster.

As you read these rules, bear in mind that a scroll represents a
sequential text file, the scroll’s name represents the file’s name,
and a line on the scroll represents one line, or field, of text within
the text file. A field is simply a string of characters that ends with a
carriage return. There is also a pointer to keep track of your
current position in the scroll.

To print new lines onto a scroll, use these commands in this order:

1. OPEN name. This selects the named scroll, opens it, and points
the pointer to the first line. If a scroll by that name is not in the
collection, one is created. You must use OPEN before you can
read from or write to a scroll.

2. WRITE name [,number of lines]. This starts at the pointer of the
named scroll, and skips lines, one by one, until it has skipped
number of lines. You must use WRITE before you can use PRINT
(step 3).

3. PRINT phrase. This places phrase on the line pointed to. Phrase
can be a character, a number, a word, or an entire line. Phrases
are printed one after another unless you use WRITE to select a
new line number. PRINT destroys anything that was previously
on the line. You can repeat this step as often as necessary.

4. CLOSE name. This rolls the scroll back up, and returns it to the
collection.

OPEN SCROLL

0
1
WRITE SCROLL, 8 lines 2
Skips |3
to |4
PRINT “...... 5
6
PRINT “...... ’ . 7
\ 8
PRINT “...... 9.
10 ...eus
CLOSE SCROLL @)

Sequential-Access Text Files: An Introduction m

In this section, a notebook models a
random-access text file.

Here are the commands you use to read lines from a scroll:

1. OPEN name. This selects the named scroll, opens it, and points
the pointer to the first line. If a scroll by that name is not in the
collection, one is created. You must use OPEN before you can
read from or write to a scroll.

2. READ name [,number of lines]. This starts at the pointer of the
named scroll, and skips lines, one by one, until it has skipped
number of lines. You must use READ before you can INPUT
phrases from the scroll (step 3).

3. INPUT phrase. This reads a phrase from the current line of the
scroll. If there are no more phrases on the current line, it reads
the first phrase from the next line. You can repeat this step as
often as necessary.

4. CLOSE name. This rolls the scroll back up, and returns it to the
collection.

You can have up to eight scrolls simultaneously open. That is why
you must always refer to them by name.

The phrase used with the PRINT and INPUT statements can be any
expression or list of expressions allowed by BASIC.

Random-Access Text Files: An Introduction

You can think of a disk containing random-access text files as a
collection of notebooks. Each notebook, like the text file it models,
has a name and an unlimited number of pages. Each of a
notebook’s pages holds the same number of characters, but since
lines can be of differing lengths, there is no specific number of
lines on a page.

This analogy is appropriate because in both cases you can flip to a
certain page before reading or writing lines of text.

As you look through these rules, remember that a notebook
represents a random-access text file; the notebook’s name
represents the file’s name; each page in the notebook represents
one record in the file (each record in a file holds the same number
of characters); and a line on a page represents a field in a record.
There is also a pointer to keep track of your current position on the
current page of the notebook.

Chapter 6: Text in Files

Figure 6-2. Printing to a Notebook

To write information on a page of a notebook, you use these
commands in this order:

1. OPEN name. This selects the named notebook, opens it, and
points the pointer to the first line of the first page. If no
notebook by that name exists, one is created. You must use
OPEN before you can read from or write to a notebook.

2. WRITE name [,page number] [,number of lines]. This quickly
opens the named notebook to page number. If the page with
that number is not yet in the notebook, that page is added to the
notebook. If a number of lines is given, that many lines are
skipped, one by one. You must use WRITE before you can use
PRINT (step 3).

3. PRINT phrase. This adds phrase to the current line on the
current page. Phrase can be a character, a number, a word, or a
line. Phrases are placed one after another until you use WRITE
again, so you must be careful not to print past the end of the
page. You can repeat this step as often as necessary.

4. CLOSE name. This closes the named notebook and returns it to
the collection.

OPEN BOOK

D

WRITE BOOK, page 20, 0 lines

PRINT “Once”
PRINT “‘upon”’
PRINT “‘a time”

Random-Access Text Files: An Introduction

To read from a page in one of your notebooks, use these
commands in the following order:

1. OPEN name. This selects the named notebook, opens it, and
points the pointer to the first line of the first page. If no
notebook by that name exists, one is created. You must use
OPEN before you can write to or read from a notebook.

2. READ name [,page number] [,number of lines]. If you use page
number, this quickly opens the named notebook to page
number. If a number of lines is given, that many lines are
skipped, one by one. You can next use INPUT to read from that
page.

3. INPUT phrase. You read each phrase from the page with an
INPUT statement. Phrases and characters are read sequentially
from the page until you use READ again, so you must be careful
not to read past the end of the page. You can repeat this step as
often as necessary.

4. CLOSE name. This closes the named notebook and returns it to
the collection.

You can have up to eight notebooks open atany given time. That is
why you must always refer to them by name.

A random-access text file has an unlimited number of records
(pages); each holds a fixed number of characters. Within each
record, you can print as many fields (lines) as will fit. As mentioned
above, a field is a string of characters that ends with a carriage
return.

Sequential- and Random-Access Text Files

As the scroll analogy illustrates, you can use the information in a
sequential-access text file in a sequential manner only, that is,
starting at the beginning of the file and working towards the end.
Because of this, sequential files are best suited for applications
that read the entire contents of the file at the beginning of the
program, and that write the modified contents back to the file at
the end of the program.

The records (pages of a notebook) in a random-access text file,
however, can be used in any order; a program can modify a single
record of the file without affecting the others. Thus random-access
text files are best for programs that keep track of a large number
of pieces of information that are about the same size.

Chapter 6: Text in Files

The current position is the character
following the last read or written
character.

So how do you decide which type of text file to use? It is a matter
of preference, but you might want to consider the following
aspects of text file use:

Disk space: The first time you write to a record in a random-
access text file, the entire record is placed on the disk. Thus if your
records are each 200 characters in size, and if you write only one
character to each of them, you are wasting 199 characters of disk’
space per record. Because records aren’t usually entirely filled,
random-access text files use up more disk space than do
sequential text files.

Amount of data: If you are going to read all the information into
memory at the beginning of the program, it is faster toread it, field
by field, from a sequential text file.

Use of data: If the information won’t all fit in memory, and you
won’t use it in any particular order, it is much faster to use a
random-access text file.

Sequential text files are best for lists of variable length
information, such as lists of words or lines of text. In fact, many
word processors store their text in sequential text files. Later in
the chapter you will write programs that place text in, and read text
from, sequential text files.

Random-access text files are best for storing many pieces of
information that are of the same size, and that will change
frequently. You might use random-access files to store monthly
inventory records, a list of names and addresses, or even a file of
help screens (the text for each ProDOS help screen is stored in
one record of a random-access text file). You will write a program
that uses random-access files to keep a list of names and
addresses.

Position-in-the-File Pointer

In the scroll and notebook analogies there was a pointer that kept
track of the current position. Every open text file has one too. As
you read from a file, the current position is the character following
the last character read. Likewise, when you write to a file, the
current position becomes the spotin the file immediately following
the last character written. When you first open a file, the pointer
indicates the first character position in the file.

In the rest of this manual, the position-in-the-file pointer is referred
to as the current position.

Random-Access Text Files: An Introduction ﬂ

To see a complete description of the
text file commands and their options,
refer to Appendix B, the summary of
ProDOS commands.

Sequential Text Files

The text file commands have many options. Because you will use a
few of them most of the time, and most of them only once in a
while, the commands and their options are explained by example,
with emphasis on the most frequently used options.

Work through the examples in the order given. Explanations of
concepts that have already been presented will be brief.

The Field

The basic unit of a sequential text file is a field. A field, like a line of
text on the screen, is a series of characters that ends with a
carriage return character. When you print a line to the screen using
the BASIC statement PRINT, without a terminating semicolon, the
line is ended with a carriage return, and the cursor goes to the next
line. Likewise, when you print to a file using the BASIC statement
PRINT, without a terminating semicolon, the field is terminated
with a carriage return; subsequent printed characters go into the
next field in the file.

The following BASIC statement could be used to write a line to the
screen, or a field to a text file.

The following line, however, writes just part of a line to the screen,
or part of a field to a file; the semicolon at the end prevents a
carriage return character from ending the current field.

A subsequent PRINT statement adds characters to the same line
on the screen, or to the same field in a text file. A sequential text
file can contain any number of fields.

Chapter 6: Text in Files

Character sequence:
Field number:

DS is (CONTROL)-(D).

Set the prefix to indicate the
/EXAMPLES/DATA directory.

Open LISTFILE; create it if it doesn’t yet
exist.

Prepare LISTFILE for writing.

Put the program’s listing in LISTFILE;
line 40 directs it there.

CLOSE all open files.

Storing Characters in Fields

Here is an example that shows the way characters are stored in the
fields of a sequential text file. Assume that you have already given
the OPEN and WRITE commands. You can place six fields in an
open sequential text file using these BASIC statements.

A program would normally use the CLOSE command to close the
file. Here is how the characters generated by lines 40 through 90
would be stored in a file. A carriage return is represented by the

symbol > .

GREEN> YELLOW> ORANGE> RED> VIOLET> BLUE>
{ FO XX F1 XM F2 HMF3XY F4 I F51}

This sequential text file has six fields, and contains 36 characters.

Note the Fact: The first field in a sequential text file is field number 0.

A Simple Sequential Text File

To create a new sequential text file, use the OPEN command with a
filename that does not yet exist. Here is a short program that
places each of its lines in a sequential text file.

Sequential Text Files ﬂ

EXEC command: see Chapter 8.

This program is very simple. It opens LISTFILE (line 30), uses
WRITE so that LISTFILE can be written to (line 40), and then gives
the BASIC command LIST. Notice that LIST is not a ProDOS
command, and is not preceded by a (CONTROL)-(D). Because the
WRITE command redirects output to a file, the LIST command
places the lines of the program, one by one, into the sequential
text file named LISTFILE , rather than on the screen. The last line
of the program closes the file.

Type in the program, and with the /EXAMPLES disk in a drive, type

The disk drive whirs as the text file is placed on the disk. When a
new prompt appears on the screen, type

and look for LISTFILE in the DATA directory.

How can you check to see what is in the new file? Here’s a little
secret. The EXEC command tells your Apple Il to take commands
from a sequential text file rather than from the keyboard. When
you type in lines of a BASIC program from the keyboard, they are
entered as a BASIC program. Thus, if you use the EXEC command
to enter lines of a program from a sequential text file, they too
must be entered as a BASIC program. Type

to remove the program from memory. Now type the command

One prompt symbol appears on the screen for each line in the
BASIC program. When the disk stops spinning, and the prompts
stop prompting, type

and you’ll see that the program has reappeared in memory. The
EXEC program is described in Chapter 8; there you will see that
this technique of listing a program to a file is a valuable tool.

Chapter 6: Text in Files

A carriage return is represented by the
symbol > .

Table 6-1. Printing to a Text File

Writing to a File Using PRINT

There are several ways that the PRINT command can be used to
place characters into a text file. In the examples in Table 6-1 A$
has the value DOG, and B$ has the value CAT.

PRINT Adds Comments
Statement Characters
PRINT TEXT> Completes current field.
“TEXT”
PRINT
“TEXT; TEXT Adds to current field.
PRINT A$;B$; DOGCAT Adds to current field.
PRINT A$,B$ DOGCAT > Unlike PRINT to the screen,

spaces are not added
between elements
separated by commas.
Completes current field.

PRINT DOG,CAT> Adds two elements to the

AS$;’,’;B$ current field, and
completes the field. See
second example, Table 6-2.

The examples in Table 6-1 are intended to show three basic
techniques: adding characters to the current field, completing the
current field (subsequent characters will go to the next field), and
adding elements to a field.

Elements, each written and read by a single variable, are strings of
characters that are separated by commas. They deserve special
mention because you may need to use some special techniques to
retrieve them intact from files.

Reading Characters From a File

There are several ways to read characters from a text file: INPUT is
best for some types of data, and GET is better for others.
Table 6-2 shows some of the ways to read characters.

Sequential Text Files ﬂ

Table 6-2. Reading From a Text File

DS is (CONTROL)-(D).

Set the prefix to /EXAMPLES/DATA.

Create the file FOUR.FRUITS, if
necessary, and OPEN it.

Before WRITE is used, characters still
go to the screen.

Prepare FOUR.FRUITS for writing.
Put field 0 in the file.
Put field 1 in the file.
Put field 2 in the file.
Put field 3 in the file.
Close FOUR.FRUITS.

The symbol > means (RETURN).

Input Statement Effect

INPUT A$ Reads one element of a field. If there is more
than one element in the field, the rest of the
field is discarded.

INPUT A$,B$ Reads two elements of a field. If there are
more than two elements in the field, the rest
of the field is discarded. If there are not two
elements in the field, elements are read from
the next field.

GET C$ Reads the next character from the file. The
GET statement reads all characters,
including commas and colons. This is a good
way to read fields with varying numbers of
elements.

As illustrated by the first two examples in Table 6-2, an INPUT
statement must contain one variable for each element in a field if it
is to read all the elements from the field. If a carriage return is read
before characters are assigned to all variables, characters are
automatically taken from the next field.

One Element Per Field

Hereis a program that writes four fields, each containing one
element, to a sequential text file.

Notice that even after FOUR.FRUITS is open, you can still PRINT to
the screen (line 40). However, after the WRITE statement in line 50,
all PRINT statements send their characters to the file. Here is how
the characters are stored in FOUR.FRUITS .

Chapter 6: Text in Files

Character sequence:
Field number:

D$ is (CONTROL)-(D).

R$ is Carriage Return.

Set the prefix to /EXAMPLES/DATA.
Prepare FOUR.FRUITS for use.
Prepare FOUR.FRUITS for reading.

For fields 0 through 3, read field | from
the file, and print it on the screen.

Then do the next field.
Close FOUR.FRUITS when done.

When there are no elements leftin a
field, INPUT reads from the next field.

Print the four fruits on the screen, one
fruit per line.

D$ is (CONTROL)-(D).
Set the prefix to /EXAMPLES/DATA.

Create the file VERB.LIST, if necessary,
and prepare to use it.

Prepare to write to VERB.LIST.
Print three elements in field 0.
Print three elements in field 1.
Close VERBL.LIST.

APPLE>BANANA> CANTALOUPE> DATE>
{ FO X{ F1 M F2 H F3 }

Here is a program that reads the four fields out of the sequential
text file FOUR.FRUITS , and into successive elements of an array.
It also prints them onto the screen so you can see that it’s working.

This program uses the INPUT statement once for each field it
reads from the file. If you wanted to read all four fields with a single
INPUT statement, you could replace lines 60 through 90 with:

The string variable R$ was set to carriage returnin line 20. When it
is printed, a carriage return is printed on the screen.

Multiple Elements Per Field

Here is a program that places three elements in each of two fields.
Following it are programs that read the elements in different ways.

Sequential Text Files

Character sequence:
Field number:

D$ is (CONTROL)-(D).

R$ is Carriage Return.

C$ is Comma.

Set the prefix to /EXAMPLES/DATA.
Prepare to use VERB.LIST.

Prepare to read from VERB.LIST.

Read three elements from field 0, ahd
three elements from field 1.

Print all six elements
on two separate lines.
Close VERB.LIST.

DS is (CONTROL)-(D).
R$ is Carriage Return.

Set the prefix to /EXAMPLES/DATA.
Prepare to use VERB.LIST.

Prepare to read from VERB.LIST.
Read first element from field 0.
Read first element from field 1.
Display the two verbs.

Close VERB.LIST.

The commas between the verbs in lines 50 and 60 are actually
written to the file. When an INPUT statement with multiple
variables reads these commas, it treats them as markers for the
end of the element currently being read. Here is the character
sequence for the file VERB.LIST (The symbol > means (RETURN)).

DRINK,DRANK,DRUNK> THINK,THANK, THUNK >
{ FO H F1 }

Here is a program that reads each verb from the file into a
separate variable.

Notice that line 70 simply reads consecutive elements from the
file. When all the elements are read from one field, elements are
automatically taken from the next.

Line 80 prints out the elements so that they look just like they did
in the original program. Note the use of C$ to print a comma, and
R$ to print a carriage return.

The next program reads only the present tense verbs.

Chapter 6: Text in Files

Data element: A string of characters
separated by commas.

In this example, as explained in Table 6-2, each INPUT statement
causes an entire field to be read, regardless of the number of
elements used in the INPUT statement. Thus line 60 causes the
string “DRINK” to be assigned to A1$, and line 70 causes the
string “THINK”’ to be assigned to A2$. Finally, the verbs DRINK
and THINK are displayed.

GET Characters From a File

The INPUT statement has its limitations. It is designed to read
data elements—strings of characters separated by commas. If
you want to read in strings of characters that may contain
commas, colons, or other control characters, or if you want to
detect particular characters as they are read, you must use the
GET statement to read the characters one by one.

The GET statement works the same whether you are reading
information from the keyboard or from a text file.

You can use the GET statement to read a variable number of
elements from a field. If you have been working through the
examples, you have already used the program CONJUGATE to
create the file VERB.LIST . If you haven’t done this, use the
command

and a text file named /EXAMPLES/DATA/VERB.LIST is created.

Although we know that there are three elements in each field of
VERB.LIST, there are situations in which your program will not
know how many elements to read from a field. Let’s write a
subroutine that uses the GET statement to read any number of
elements, separated by commas, from one field of a file.

The following subroutine reads elements, separated by commas,
and then places them into consecutive elements of string array A$.
The element in use at any time is indicated by A$(1).

The GET statement returns one character. This subroutine reads a
character into the variable C$, and if the character is not a comma
or a carriage return, adds it to A$(l). Because a comma separates
two elements, the subroutine upon reading a comma adds 1 to the
variable |, causing | to indicate the next element of the array, and
then continues reading characters. It repeats this process until it
reads a carriage return, which marks the end of the field.

Sequential Text Files

R$ is Carriage Return.

Start with array element 0.
Use next array element.
Read the next character.
If comma, use next element.
If carriage return, you're done.
Otherwise, add C$ to element.

D$ is (CONTROL)-(D).

Set the prefix to /EXAMPLES/DATA.
Prepare VERB.LIST for use.

Prepare VERB.LIST for reading.
Read all elements from a field.
Close VERB.LIST.

Now print the | elements of A$ onto the
screen.

The next program uses this subroutine to retrieve the elements
from the first field of the file VERB.LIST . Recall that you use a
subroutine by saying GOSUB followed by the number of the line on
which the subroutine starts (see line 60 below). When the RETURN
statement in the subroutine is executed (line 1040 above), the line
following the GOSUB statement is executed (line 70 below).

To test this program, type in the lines of the program and the lines
of the subroutine, and then type

You see the three words in the first field of the file VERB.LIST
printed on the screen, one word per line.

In this example only the first field was read from the file. A

technique for reading a variable number of fields from a file is in
the program GET.TEXT below.

Chapter 6: Text in Files

Allow enough room for 100 lines of text.

Ask for next line of text with a line
number followed by a colon.

Call a subroutine that reads a line of
characters into array element A$(l).

If A$(l) is not empty, then go to line 110,

which prompts for the next line of text.

Entering and Reading Text

You are now going to write two short programs: one that reads text
from the keyboard and then saves it to a file, and another that
reads text from a file and then prints it on the screen.

As you read through the following explanations of the programs,
don’t bother typing in the lines of the programs. You can find these
programs in the /EXAMPLES/PROGRAMS/ directory as the files
MAKE.TEXT and GET.TEXT.

A Program for Entering Text

This program is stored in the file
/EXAMPLES/PROGRAMS/MAKE.TEXT. It lets you type in up to
one hundred lines of text and save them in afile. It asks for lines of
text, reads them from the keyboard, and places them into
consecutive elements of the array A$. The program stops reading
lines as soon as it encounters an empty line. This portion of the
program is:

This part of the program uses a couple of little tricks. Since the
value of a variable is 0 the first time it is used, the first time
line 110 is executed, | is set to 1, and the prompt

is printed on the screen. Next, line 120 reads a line of text into
array element |. Thus the Ith line of text is placed in array
element I. If that array element is not empty—that is, if it does not
have a length of zero—then line 130 goes to line 110, which asks
for the next line of text.

Entering and Reading Text

D$ is (CONTROL)-(D).

Open the named file (N$).
Prepare to write to the file.
For each line of text,

print the line to the file

and continue to the next line.

Close the file when done.

Once all the text is in the array, the program asks you for the name
of the file in which it is to place the text:

and reads that name into the variable N$. Line 160 gives you a
chance to end the program without saving the text to a file. If the
name of the file has a length of zero—that is, if you pressed
(RETURN)before typing any other characters—the program goes to
line 230 which is the end of the program. (Notice the different
techniques used by lines 160 and 130 to detect empty strings.)

Next comes the task of saving the contents of the array to the
named file. The last line that the program read in is line |, and it is
an empty one (used to indicate the end of the text). Therefore, now
print lines 1 through | - 1 to the file. Do this as follows:

Finally, end the program with the line

The purpose of the TEXT command is explained below.

If you type in the program as presented so far, it works. The
following lines print the instructions for using the program onto
the screen, and freeze them there.

Chapter 6: Text in Files

Setting the text window is discussed in
an appendix of the Applesoft BASIC
Programmer’s Reference Manual.

Allow enough room for 100 lines of text.

DS is (CONTAOL)-(D).

R$ is Carriage Return.

Line 40 causes the Apple Il to switch the display to full screen text
mode, to clear all characters from the screen, and to move the
cursor to the upper-left corner of the screen. Lines 50 through 90
place the instructions for the program on the screen, some in
normal letters, and some in inverse letters. Line 100 freezes the
upper six lines of the screen so they remain on the screen even if
you enter more lines than the screen can hold. This is called
setting the text window.

Run this program a few times, creating text files of different
lengths. Experiment with the different features of the program to
become familiar with the way they work.

For example: You can enter a blank line of text by putting spaces on
that line; since the line contains characters, the length of the line is
not 0.

A Program for Retrieving Text

This program is in the file /EXAMPLES/PROGRAMS/GET.TEXT .
Load the program so you can look at the lines as they are
described below.

First the program sets up the variables it is going to use. It
dimensions the array A$ to hold up to 100 elements, and it assigns
the values RETURN and CONTROL-D to R$ and D$, respectively.

In line 60, the program asks for the name of the file from which it is
to read text, and reads the filename into the variable N$.

Entering and Reading Text

Open the text file.
Prepare to read from the file.

For each line that could be in the text
file,

read the line into array element |
and then print it on the screen.

Then do the next line.
Close the file.
Restore text mode, and end.

Having read the name of the text file, the program can now read
consecutive lines from the file:

There is a small problem with this part of the program. If the text
file contains fewer than 100 lines, the program reads the last line
of the text file, and then has no more characters to read. The
program tries to read a character anyway, fails, and prints out the
error message

To prevent this occurrence, use the ONERR GOTO statement
described in Chapter 5. If you include the line

the program, upon encountering an error, simply closes the file
(line 160) and ends.

Note: This is not the best way to use the ONERR GOTO statement.
Before taking any action, a better version of this program would check
to see which error occurred . Refer to the section on the ONERR GOTO
statement in Chapter 5 to see how to do this.

The subroutine that reads lines of text is, as before

Chapter 6: Text in Files

The lines presented so far comprise a complete program; if you
type them in, they will run. As before, you can add a few lines that
permanently place instructions for using the program on the
screen.

Line 50 causes the Apple Il to switch to full screen text mode, to
clear all characters from the screen, and to move the cursor to the
upper-left torner of the screen. Lines 70 and 80 place instructions
for the program on the screen. Line 90 freezes the upper six lines
of the display so they remain on the screen even if you enter more
lines than the screen can hold.

The OPEN Command

You can use the OPEN command only in deferred mode.

Before your program can write to or read from a sequential text
file, it must open the text file using this command

OPEN pn [,S#] [,D#]

Files that you open must be closed (usually at the end of the
program). If you don’t close a file that you open and write to, you
may lose some of the written data.

When a program opens a text file, ProDOS designates a space in
memory, called the file buffer, to hold all important information
about the file, and prepares the system to read or write starting at
the beginning of that file. Up to eight files can be open at once.

If the file designated by pn does not yet exist, a file with that name
is created, and is added to the proper directory. If the file exists,
and is already open, you get the i error. You (or the
program) must close the file before opening it again.

Warning

When you open a file, the pathname or partial pathname with which you
opened the file becomes that file’s identifier. In all subsequent references
to that file, you must use exactly the same pn—even if you change the
prefix. See the example which follows.

The OPEN Command

Assume the prefix is currently set to /APPLE/ (a popular fruit). If
you open the file /APPLE/STRUDEL using the BASIC line

you must always use the name STRUDEL when referring to that
file. For example, if you subsequently use the commands

you get the ¢ i error. Even though the prefix has
changed, you should still use the same file identifier:

The OPEN command has other options that are not applicable to
sequential text files. They are discussed elsewhere.

The Options

pn pn indicates the name of the file to be opened. If the file
already exists, it must not be open. If the file does not yet
exist, a file of type text (TXT) is created.

[,S#] The slotoption hasits usual meaning.

[,LD#] The drive option has its usual meaning.

For Example

Several examples of the OPEN command have already been
presented. The following section explains a new aspect of OPEN.

Delete Before Opening

Suppose your program routinely replaces an old text file with a

new one with the same name. If the new one is shorter than the old
one, then unless the program deletes the old file first, the new one
has part of the old file hanging on the end. If you don’t want all this
extra text at the end of the file, you must delete the old file before
writing to the new one. This is usually easy, but what if it is the first
time you have run the program, and the old file doesn’t yet exist?

Chapter 6: Text in Files

DS is (CONTROL)-(D).

N$ is the name of the file.

Open the file. If it does not already exist,
it is created.

Close the file before deleting it.

Since the file definitely exists, the file
can be deleted.

For example, suppose a game creates and uses the file
/GAMES/DINGER , and you wish your program to delete that file at
the start of each new game. The line

causes the error message

if the file doesn’t exist, and the program halts. Here’s a quick way
to delete a file and open it for new data, whether or not the file
already exists:

The rest of the program goes here.

Simply open and close the file before deleting it. This ensures that
the file exists and can be deleted.

The CLOSE Command

You can use the CLOSE command in either immediate or deferred
mode.

After a program finishes writing to or reading from a file, it must
close the file. Proper closure of every file is necessary to ensure
that all characters are written to their files, and that the file buffers
are properly released. CLOSE takes the form

CLOSE [pn]

Warning

A program must always close a file that it opened. In some circumstances,
however, a program that contains an error will stop before it can close all
open files. When this happens, issue the CLOSE command from the
keyboard to close all open files.

The CLOSE Command

The Options

The CLOSE command without any options closes all open files.

[pn] pnindicates the name with which the file was opened.

The WRITE Command

You can use the WRITE command in deferred mode only.

You must use the WRITE command before you can use the PRINT
statement to place characters in a file. The WRITE command
identifies to ProDOS the file to which you want to write characters,
and the position in the file where the first character will be placed.
The WRITE command remains in effect until the next ProDOS
command is given. This command takes the form

WRITE pn [,F#] [,B#]

The Options

Use the F# and B# options to choose the position of the first
character to be written to the file. If you don’t use these options,
the first character is written to the file’s current position.

pn pn indicates the name of the file to be written to. It must be
identical to the name with which the file was opened.

[,F#] # is the number of fields past the current position that
ProDOS is to read and discard. ProDOS does this by
reading characters, starting at the current position, until it
has read the specified number of carriage returns. This
option changes the file’s current position.

[,B#] +#isthe number of bytes, or characters, that ProDOS must

read and discard. The new current position is the sum of #
and the previous current position.

Chapter 6: Text in Files

N The READ Command

You can use the READ command only in deferred mode.

You must use the READ statement before you can use the INPUT
and GET statements to read characters from a file. The READ
command identifies to ProDOS the file from which to read
characters and the position in the file from which to read the first
character. The READ command remains in effect until the next
ProDOS command is given. This command takes the form

READ pn [,F#] [,B#]

The Options

Each time you use the READ command you must identify a file by
name (pn).

Use the F# and B# options to choose the position of the first
character to read from the file. If you don’t use these options, the
first character is read from the file’s current position.

pn pn indicates the pathname or partial pathname of the file
you want to read from. It must be identical to the value
of pn with which the file was opened.

[LF#] # is the number of fields which ProDOS is to read and
discard. ProDOS does this by reading characters, starting
at the current position, until it reads the specified number
of carriage returns. This option changes the file’s current
position.

[,B#] # is the number of bytes, or characters, that ProDOS is to

read and discard. The new current position is the sum of #
and the previous current position.

The READ Command 109

See the descriptions of the OPEN,
POSITION, and WRITE commands for
more information on the operation and
use of the APPEND command.

The APPEND Command

Use the APPEND command only in deferred mode.

The APPEND command lets you add data to the end of a
sequential text file. It is like three commands in one: it opens the
file (see the OPEN command), positions to the end of the file (see
the POSITION command), and then writes to that file (see the
WRITE command). This command has the form

APPEND pn [,S#] [,D#]

After giving the APPEND command, your program can send data
to the file using the PRINT command.

The Options

pn pn indicates the file to be appended. It must not be open. If
the indicated file does not yet exist, the file is created.

[,S#] The slot option has its usual meaning.

[,LD#] The drive option has its usual meaning.

For Example

You can modify the program MAKE.TEXT—which creates a
sequential text file—so it adds lines to the end of a text file.

With the /EXAMPLES disk in drive 1, and with ProDOS started up,
load /EXAMPLES/PROGRAMS/MAKE.TEXT into memory and
display it on the screen with the commands

Do you remember how MAKE.TEXT works? First it reads lines of
text into the array A$, then it asks you for a filename, and then it
opens the file and prints the lines of text to the file.

Chapter 6: Text in Files

To append lines of text to the end of a file, all you need to do is
replace the OPEN and WRITE statements with an APPEND
statement. Replace lines 50, 170, and 180 by entering the
following lines:

If you want to keep this program, you can save it by typing

The APPEND command, like the OPEN command, creates a new
file if the file you try to append does not already exist.

The FLUSH Command

Use the FLUSH command in either immediate or deferred mode.

As a program writes to a text file, ProDOS stores a block of

512 bytes, or characters, of data before any of the data is placed
on the disk. If you use the FLUSH command, all the characters that
are currently stored are transferred to the file. After you use the
FLUSH command, you can be sure that every character written to
a file is actually placed in that file. The FLUSH command takes the
form

FLUSH [pn]

The Options

The FLUSH command without any options flushes all open files.

[pn] pnindicates the file to be flushed. It must be identical to
the pn with which the file was opened.

For Example

This command can be useful if you wanted to make a program
absolutely foolproof. If you use the FLUSH command after each
statement that prints to a file, you can be sure that every character
actually reaches the file. Your programs will be a little longer and a
little slower, but a lot more reliable.

The FLUSH Command [111 |

This command is also of great value for data collection
applications in which there are frequent power outages. If your
application program is named STARTUP, the program will restart
after each power outage. Using FLUSH, you can maximize the
amount of data collected.

Note: Frequent use of the FLUSH command slows down your progr'am.
You must decide the importance of speed versus data integrity.

The POSITION Command

Use the POSITION command in deferred mode only.

With the POSITION command, you can access the information in
any field or byte within a file. This command, which takes the form

POSITION pn,F#

starts at the current position, and reads and discards the number
of fields mentioned in F#. The file must be open.

For example, if the current position is within the fourth field of a
file, and you want to read from the tenth field in the file, skip six
fields using the POSITION command with the option ,F6.

The Options

pn pn indicates the file whose current position is to be altered.
It must be identical to the pn with which the file was opened.

,F# # indicates the number of fields to be read and discarded.
If you try to position past the end of the file, you get the
£ i error message.

Chapter 6: Text in Files

Chapter

Random-Access Text Files

115 About This Chapter

115 Random-Access Text Files
116 Record Length

116 Writing to a Record

117 Inside a Record

117 Reading From a Record
117 A Sample Program

119 Writing a Record

121 Reading a Record

123 Controlling the Program
124 The OPEN Command

124 The Options

125 The CLOSE Command
125 The Options

126 The WRITE Command

126 The Options

127 The End of File

127 The READ Command

128 The Options

128 The APPEND Command
129 The Options

129 For Example

131 The FLUSH Command

131 The Options

131 The POSITION Command
132 The Options

Chapter 7: Random-Access Text Files ﬂ

Random-Access Text Files

About This Chapter

This chapter introduces you to the use of ProDOS random-access
text files. It describes how to create them, how to place
information in them, and how to take information out of them.

Because random-access text files are so similar to sequential-
access text files, this chapter assumes that you are already familiar
with the material in the preceding chapter.

The first part of this chapter explains the structure of random-
access text files and how you can make use of it. The next part of
the chapter leads you through a typical program that uses
random-access text files. The remainder of the chapter contains a
description of the commands you use to manipulate random-
access text files.

By the Way: Notice that although the commands described in this
chapter are the same as those in Chapter 6, the options that
accompany them are different. Appendix A contains a summary of the
commands with all their options.

Random-Access Text Files

As illustrated by the scroll versus notebook analogy in Chapter 6,
there is a fundamental difference between sequential and random-
access text files: a sequential text file is a single unit, composed of
a series of fields; a random-access text file consists of multiple
units, or records, all the same size, each composed of a series of
fields. Figure 7-1 illustrates this comparison.

Random-Access Text Files

Figure 7-1. Sequential and Random-
Access Text Files

Record length is the number of
characters a record can hold. All
records in a single random-access text
file are the same length.

w

N

[THT

UR

[T T

-
il

E

Sequential Random-Access

Record Length

When you open a random-access text file for the first time, you
must assign it a record length. For example, to open a random-
access text file named /MUSIC/CLASSICAL that has a record
length of 33, use the command

The length of a record is the number of characters it can hold.
Each record in the file /MUSIC/CLASSICAL is 33 characters long.

Notice that when you open a random-access text file, you don’t
need to specify the number of records that the file is going to hold.
ProDOS takes care of such details for you.

Writing to a Record

When you use the WRITE command with a random-access text file,
you must specify the number of the record to which you are going
to write (just like writing to a page of a notebook). If the specified
record does not yet exist, ProDOS reserves enough space on the
disk for that entire record. Thus, even if you are only going to place
one character in a record of the CLASSICAL file, that record will
use 33 characters’ worth of disk space.

Chapter 7: Random-Access Text Files

Storing characters is explained in the

A

section on fields in Chapter 6.

For example, before writing to record 10 of the file you just
opened, use the command

The subsequent PRINT statements you use place characters into
record 10 of this file.

Inside a Record

The storage of characters in a record is just like the storage of
characters in a sequential text file. The difference is that there is a
maximum number of characters that will fit into each record.

Warning

You must be careful not to print more characters to a record than it can
hold. If you do, ProDOS simply prints the extra characters into the
beginning of the next record. For this reason, a file’s record size must be
at least as great as the largest number of characters to be stored in any of
its records. Don’t forget that the carriage return at the end of each field is
counted as a character too.

Reading From a Record

When you use the READ command with a random-access text file,
you must specify the number of the record from which you want to
read. For example, to read the seventh record from the
CLASSICAL file, uge the command

followed by the appropriate INPUT or GET statements. If the
record does not exist, the READ statement is allowed, but the first
INPUT or GET statement causes th error message.

A Sample Program

To illustrate the use of random-access text files, here is a short
program that you can use to keep track of an address list. The
program has two main tasks: to enter new addresses and to look
up addresses that are already entered. Each of these two partsis a
subroutine; a main program calls these subroutines as needed.

A Sample Program W

The first address you give the program is stored in record one of

the file, the second in record two, and so on. The total number of

records in the file is stored in record zero of the file. Figure 7-2
Figure 7-2. Five Addresses in the File represents the structure of the file when it contains five addresses.

Record
Number
5 >
4 — A
3 |
Joe’s Mama
2 . >
— |« Addresses
(5 of them)
Bill Smith
1 » | 2911 Main St.
Los Altos, CA
5

Total Number of Addresses

The total number of addresses in the file is initially 0. First write
and run a little program that places the initial total number in
record 0.

D$ is (CONTROL)-(D).
Open the file.

Write to record 0.

Put a 0 there.

Close all files.

Line 20 opens the file BLACK.BOOK, in which addresses are to be
kept, with a record length of 200. Thus, addresses stored by the
program can have no more that 200 characters in them. Line 30
specifies that data will be written to record 0 of the file. Line 40
prints a 0 to that record, and line 50 closes the file.

Chapter 7: Random-Access Text Files

Figure 7-3. Writing an Address to
Record Five

Type in this program and run it. The disk drive spins as the new file
BLACK.BOOK is created (OPEN causes a new file to be created if
it does not already exist), and the 0 is placed in it. Then type

to remove this program from memory. You no longer need it.

Writing a Record

You must now decide how information is arranged within each
record. Each record contains a name, an address, a city, a state, a
zip code, and a phone number. Place each piece of information in
a separate field; that is, use a separate print statement to place
each piece in the record. To improve the clarity of the program, use
a separate variable for each piece of the address. Figure 7-3
shows the BASIC statements that place an address in record five
of a file named BLACK.BOOK .

PRINT D$;“OPEN BLACK.BOOK,L200"

PRINT D$,“WRITE BLACK.BOOK,R5”

PRINT N$ »| NAME 9
PRINT A$ » | ADDRESS 3
PRINTC$ > CITY")
PRINT S$ > | STATE 2
PRINT Z$ » | ZIP CODE 2
PRINT P$ | PHONE P)
PRINT D$;“CLOSE BLACK.BOOK"” Record 5

To write a new record to a file

1. Read in the new address to be entered. Store it in the variables
N$,A$,C$,5$,2$,P$.

2. Add 1 to the total number of records stored (TR=TR-+1). This
is the number of the new record.

. Use OPEN and WRITE to prepare that record to be written.
. Print the new information to the file.

. Print the new total number to record 0.

o 0 A~ W

. Close the file.

A Sample Program

Read name to be entered.
Read address.

Read city.

Read state.

Read zip code.

Read phone number.

Open the file with record length of 200.

Read total records.
Get total records; add 1.
Prepare to write to record number TR.

Place each part of address in a
separate field.

Prepare to write record number in
record 0.

Print new record number.
Close the file.
End of subroutine.

Store records in file
/EXAMPLES/DATA/BLACK.BOOK.

Call the subroutine, over and over
again.

Here is a subroutine that does this. Lines 1010 through 1060
gather the information for an address.

Lines 1070 through 1120 open the file whose name is stored in F$
and write information to a new record (record TR) in that file.

Lines 1130 through 1160 print to record 0 the total number of
address records that are now in the file, close the file, and end the
subroutine.

These lines are already typed in and stored as part of the program
in the file /EXAMPLES/PROGRAMS/ADDRESS . If you want to
test just this subroutine, load
/EXAMPLES/PROGRAMS/ADDRESS , and add the lines

Chapter 7: Random-Access Text Files

Figure 7-4. Reading an Address From
Record Five

When you want to stop the program, press (CONTROL)-(C)and then
press (RETURN). These keystrokes, as described in the Applesoft
Tutorial, stop almost any program. If you typed in lines 11-13, type

to remove them from the program.

Reading a Record

You already know how information is stored in the records. Your
new task is to find a way to ask which record (address) is to be
displayed. To do this, display the name from each record, together
with its record number, and then ask for the number of the desired
address. Figure 7-4 shows the BASIC statements that read an
address from record five of the file BLACK.BOOK .

PRINT D$;“OPEN BLACK.BOOK,L200

PRINT D$;“READ BLACK.BOOK,R5"

NAME % INPUT N$
ADDRESS‘) > INPUT A$
CITY") > INPUT C$
STATE 7 > INPUT S$
ZIP CODE) > INPUT Z$
PHONE 7 > INPUT P$
Record 5 PRINT D$;“CLOSE BLACK.BOOK"”

To read a record from the file
1. Use OPEN and READ to prepare the file to be read.
. Read the total number of entries from the file.

. Print a numbered list of the entries on the screen.

2

3

4. Find out which entry to display.

5. Print the selected record on the screen.
6

. Close the file.

A Sample Program W

Open the file.

Read from record 0.

Get the number of records.
Check for no records.
Clear the screen.

For each record |, position to record I,
and read the stored name.

Print the record number and the name
on the screen.

Repeat for all records.

Empty ProDOS command; turns off
READ.

Get numeric value of answer.
If bad number, try again.

Here is a subroutine that does all these things. First it reads the
total number of addresses from record 0 of the file. Then it reads
the name from each address and prints all of them on the screen.

Because the READ statement causes ProDOS to read characters
from the file rather than from the keyboard, you must cancel the
READ statement’s action before reading anything from the
keyboard. A READ or a WRITE is canceled by a ProDOS
command; one way of doing this is by using the empty ProDOS
command in line 2110 below.

Line 2120 asks for a number and then reads it into the string R$.
Since the question asks for a numeric answer, it could have read
the answer into a regular variable, but then the accidental pressing
of a letter key would cause an error. Line 2130 converts R$ to a
number (R), and the next line compares the number to the valid
address numbers. An invalid response causes the question to be
redisplayed.

Chapter 7: Random-Access Text Files

Clear the screen.

Prepare to read record R.

Read address.

Print name and address.

Put city and state on the same line.
Print zip code and phone number.
Close the file.

Position the cursor.

Preserve the screen.

D$ is (CONTROL)-(D).
F$ is the file of addresses.
Clear the screen.

Convert response to number.
If bad entry, try again.

Enter a new address.

Look up an address.

The last part of this subroutine places an address on the screen. It
uses READ to position to the requested record and uses INPUT to
read the six fields from the record. Then it prints the six fields on
the screen. Line 2230 prevents the address from being erased
before you have a chance to read it.

Controlling the Program

The remainder of the program is simple. Here is the main part of
the program that lets you choose between entering a new address,
reading an existing address, or ending.

Lines 80 through 100 use the same technique that you used earlier
to choose a record to be displayed. They read in a letter, convert it
to a number, and then check to see that the number falls in the
expected range. If it is a bad entry, the program repeats the
question. A good entry causes the proper subroutine to be called.

See if you can modify the program to delete and change entries.

A Sample Program

The OPEN Command

Use the OPEN command in deferred mode only.

Before a program can write to or read from a random-access text
file, it must open the text file using this command

OPEN pn [,L#] [,S#] [,D#]

When you open a random-access text file for the first time, you
must open it with the length option, L#. # is the number of bytes,
or characters, that each record can hold. Each subsequent time
you open the file, the original record length is assumed.

If you open a random-access text file with a record length other
than that with which it was created, the new record length is used
as long as the file is open, but the original record length remains as
the default.

Files that are opened must be closed, usually at the end of the
program. If you don’t close a file that you open and write to, you
may lose some of the written data.

When a program opens a text file, ProDOS designates a space in
memory, called the file buffer, to hold all important information

about the file. It also prepares the system to read ci write starting
at the beginning of the file. Up to eight files can be open at a time.

Warning
ProDOS uses the name with which you opened the file as the file’s
identifier. Always use the exact same name, even if you change the prefix.

The Options

pn pn indicates the name of the file to be opened. If the file
already exists, it must not be open. If the file does not yet
exist, it is created as a text file.

[LL#] You must use the length option the first time you open the
file, that is, when the file is created. If you create a file
without the length option, the file is given a record length of
one. The record length, #, must be in the range 1 to 65535.

Chapter 7: Random-Access Text Files

A& Warning

Be sure that a file’s record length is greater than the maximum number of
characters that you will ever put in one of the file’s records. If you
accidentally write past the end of a record, data is written onto the
beginning of the next record in the file, destroying any data that might be
in that next record.

[,S#] The slot option has its usual meaning.

[,D#] The drive option has its usual meaning.

The CLOSE Command

Use the CLOSE command in either immediate or deferred mode.

After a program finishes writing to or reading from a file, it must
close the file. Proper closure of every file is necessary to ensure
that all characters are written to their files, and that the file buffers
are properly released. CLOSE takes the form

CLOSE [pn]

Warning

A program must always close a file that it opened. In some circumstances,
however, a program contains an error and stops before it can close all
open files. When this happens, issue the CLOSE command from the
keyboard to close all open files.

The Options

The CLOSE command without any options closes all open files.

[pn] pnindicates the name of the file to be closed. It must be
identical to the name with which you opened the file.

The CLOSE Command 125

The WRITE Command

Use the WRITE command only in deferred mode.

You must use the WRITE statement before you can use the PRINT
statement to place characters in a record of a random-access file.
The WRITE command tells ProDOS the file, the number of the
record, and the position within the record of the first character to
be written. The WRITE command remains in effect until another
ProDOS command is given. This command takes the form

WRITE pn [,R#] [,F#] [,B#]
You must use the WRITE command each time you want to write to

a record other than the current record. If you use the WRITE
command without the R# option, ProDOS defaults to record 0.

The Options

pn pn indicates the file to be written to. It must be identical to
the name with which the file was opened.

[LR#] # isthe number of the record to which characters are to be
sent. If this option is omitted, record 0 is assumed. The
maximum record number is 16 megabytes divided by the
file’s record length, or 65535, whichever is smaller.

If # is larger than any previous record number, the
E {L.E column in the catalog changes. Refer to the
sectlon on the End of File for more details.

[LF#] # is the number of fields that ProDOS is to read and
discard. ProDOS does this by reading characters, starting
at the current position, until it has read the specified
number of carriage returns. This option changes the file’s
current position.

[,B#] # is the number of bytes, or characters, that ProDOS is to

read and discard. This new current position is the sum of #
and the previous current position.

Chapter 7: Random-Access Text Files

The End of File

Each file listed by the CATALOG command has a humber under
the i i heading. For all types of files except random-
access, this number indicates the number of bytes in the file. For
random-access files, this number represents the number of bytes
that would be in the file if every record, from 0 to the highest
numbered record written to, were used.

For example, assume that a random-access text file has a record
length of 50, and that data is written to records 0, 156, 756,

and 1890. This file has data stored in four blocks on the disk.
However, & is calculated by multiplying the total possible
number of records by the record length (1891 * 50 = 94550). This
number is used by ProDOS to determine the location on the disk
of the last record in the file—needed, for example, if you want to
append a record to the file.

The READ Command

Use the READ command only in deferred mode.

Before you can read from a record, you must use the READ
command to indicate the number of the record you want to read.

This command takes the form
READ pn [,R#] [,F#] [,B#]

When used with random-access text files, the READ command
tells ProDOS the file from which the next INPUT or GET statements
will take characters (pn), the record within the file from which
characters are to be read (R#), and the position within the record
from which the first character is to be read (F# and B#). The READ
command remains in effect until the next ProDOS command is
given.

The READ Command ﬂ

The Options

pn pn indicates the name of the file to be read. It must be
identical to the name with which you opened the file.

[LR#] # is the number of the record from which you are going to
read. If you don’t use this option, record 0 is assumed.
If R# indicates a record that doesn’t exist, you don’t get an
error; the first INPUT or GET statement from a non-existent
record causes an error. The maximum allowable record
number is 16 megabytes divided by the record length
or 65535, whichever is smaller.

[,F#] # is the number of fields past the beginning of the
indicated record which ProDOS is to read and discard.
ProDOS does this by reading characters, starting at the
current position, until it has read the specified number of
carriage returns. This option changes the file’s current
position.

[,B#] # is the number of bytes, or characters, that ProDOS is to
read and discard. The new current position is the sum of #
and the previous current position.

The APPEND Command

Use the APPEND command in deferred mode only.

You can use the APPEND command to add data to the end of a
random-access text file. It is like three commands in one: it opens
the file, positions to the beginning of the record that follows the

last record in the file, then it writes to that file. This command has
the form

APPEND pn [,L#][,S#] [,D#]

After giving the APPEND command, your program can send data
to the file using the PRINT command.

Chapter 7: Random-Access Text Files

The Options

pn pn indicates the file to be appended. It must be open. If the
indicated file does not yet exist, it is created.

[,L#] # indicates the length of the file’s records. If # is the same
as the record length assigned when the file was created,
the next character written is the first character following
the last record in the file. If not, see the following
description.

First ProDOS positions to the last character in the file (the
character indicated in the & columnin a
CATALOQG). It divides & : - by the record length; the
remalnder is the offset into the current record. Finally it
uses i HiH 1 E to find the position of the first character in
the next record (- - Offset + Record

Length + 1). Thus, if you use a record length of 1 when
appending to a random-access te tf|| the next character
written is the character following i that is, it is
the same as appending a sequential text file.

[,S#] The slot option has its usual meaning.

[,LD#] The drive option has its usual meaning.

For Example

You can change the ADDRESS program so it uses APPEND in the
subroutine that writes new records.

With the /EXAMPLES disk in drive 1, and with ProDOS started up,
set the prefix to the /EXAMPLES/DATA/ directory

Now load ADDRESS into memory and display part of it on the
screen with the command

The APPEND Command

Open the file with record length of 200.

Read total records.
Get total records; add 1.

Prepare to write to record number TR.

Place each part of address in a
separate field.

Prepare to write record number in
record 0.

Print new record number.
Close the file.
End of subroutine.

Add after last record.

Delete these lines.

Put new address at end.

Place each part of address in a
separate field.

Read total records.
Get total records; add 1.

Prepare to write record number in
record 0.

Print new record number.
Close the file.
End of subroutine.

You now see these lines:

The purpose of lines 1070 through 1100 is to discover the number
of the last record, and to prepare to write to it. The APPEND
command does just that. Replace those four lines with

After the subroutine writes the new address to the record

(lines 1110 and 1120), it saves the new number of records in
record 0 of the file. Before the program can do this it must
discover the total number of records, as was previously done in
lines 1080 and 1090. Just place the same two lines somewhere
between 1120 and 1130 (say, 1124 and 1126), as shown below,
and the revision of the subroutine is complete. It should now look
like this:

Chapter 7: Random-Access Text Files

The FLUSH Command

Use the FLUSH command in either immediate or deferred mode.

As a program writes to a text file, ProDOS stores a block of

512 bytes, or characters, of data before any of the data is placed
on the disk. If you use the FLUSH command, all the characters that
are currently stored are transferred to the file. After you use the
FLUSH command, you can be sure that every character written to
a file is actually placed in that file. The FLUSH command takes the
form

FLUSH [pn]

The Options
The FLUSH command without any options flushes all open files.

[pn] pnindicates the file to be flushed. It must be identical to the
name with which the file was opened.

The POSITION Command

Use the POSITION command only in deferred mode.

When used with random-access text files, the POSITION
command works exactly as it does with sequential text files. You
can use it to skip fields within the current record; you cannot use it
to position to another record. This command takes the form

POSITION pn [,F#] [,B#]

Starting at the current position, ProDOS reads and discards the
number of fields specified in F#, then it reads and discards the
number of fields specified in B#. The file must be open.

For example, if the current position is within the fourth field of a
record, and you want to read from the tenth field in that record,
skip six fields using the POSITION command with the option ,F6.

The POSITION Command

The Options
pn pn indicates the file whose position is to be altered.
F# # indicates the number of fields to be read and discarded.

If you try to position past the end of the file, you get the
4 error message.

[,[B#] After skipping the number of fields specified by the field
option, ProDOS reads and discards the number of bytes,
or characters, specified by # in the byte option.

Chapter 7: Random-Access Text Files

Chapter 8

EXEC: Control From
a Text File

135 About This Chapter

136 EXEC Demonstration

138 Create an EXEC File Using BASIC

138 Printing the Commands to the File
139 An All-Purpose EXEC Maker Program
140 Listing a BASIC Program to a File

141 Use EXEC to Combine Programs

141 Machine Language to BASIC

142 The EXEC Command

142 The Options

Chapter 8: EXEC: Control From a Text File m

EXEC: Control From
a Text File

About This Chapter

This chapter explains how you can use the EXEC command to
cause the Apple Il to take its commands from a sequential text file
rather than from the keyboard. This sequential text file can contain
ProDOS commands, lines of BASIC program, or even lines of input
to a BASIC program—nearly any command that you can type from
the keyboard.

Because the various uses of EXEC are not always obvious,
examples are given to show how the EXEC command can be used.
This chapter provides several diverse examples; this may give you
some ideas for using it in new and different ways.

Throughout this chapter, a text file that is to be used with the EXEC
command is called an EXEC file, and the contents of an EXEC file
are called an EXEC program.

Because EXEC files are externally identical to all other text files,
you’ll find it useful to place the ending .EXEC on all EXEC
flenames. This convention is used throughout this chapter.

You can use an EXEC file

® to give automatically a frequently used set of commands

® to use instead of repeatedly typing the same inputs into a
program

® to combine BASIC programs or subroutines

e to put a machine-language routine in a BASIC program.

About This Chapter m

This chapter first gives you a demonstration of the EXEC
command, then a few different ways to create EXEC files, and
finally some sample applications of the EXEC command. The
section that describes the EXEC command in detail is at the end of
the chapter.

EXEC Demonstration

There are two steps to the EXEC demonstration. In the first step
you run a BASIC program that creates an EXEC file, and in the
second step you use the EXEC command to tell your Apple Il to
take its commands from the EXEC file.

With your /EXAMPLES disk in drive 1, set the prefix by typing

and then type

to see this page of instructions

Chapter 8: EXEC: Control From a Text File

Press (SPACE). The screen goes blank, the message

appears on the screen, and the disk drive’s ! & light glows as
the program writes the SHOWOFF file onto the disk. When the
program finishes, you see this message

Before you actually run the EXEC program, take a look at
SHOWOFF.EXEC using the GET.TEXT program from Chapter 6.

Type

then choose the file SHOWOFF.EXEC . Notice the wide variety of
commands, that can all be typed from the keyboard. Set this
command file into action by typing

As SHOWOFF.EXEC is running, it describes everything it is doing.
Surprised? Don’t be, showoffs are hardly ever modest.

EXEC Demonstration m

Create an EXEC File Using BASIC
A BASIC program that creates an EXEC file must

1. Use the OPEN command to open the text file.

2. Use the WRITE or APPEND command to prepare the file to be
written to.

3. Use the PRINT or LIST command to place commands in the text
file.

4. Then use the CLOSE command to close the text file.

Printing the Commands to the File

Here is a step by step example that illustrates how to create an
EXEC file named DOIT.EXEC that contains these commands

First enter and use the SAVE command to save an Applesoft
program called /EXAMPLES/PROGRAMS/AWAY to be run by the
EXEC program.

o

Next write and save the following program, called MAKE.DOIT,
which, when run, creates a text file called
/EXAMPLES/PROGRAMS/DOIT.EXEC . The PRINT statements
that begin with D$ are ProDOS commands; they are executed
when the program is run. The other PRINT statements are written
to the EXEC file, to be used later. Notice that ProDOS commands
in an EXEC file, such as i , should not be preceded by a

(coNTROL)-(D).

Chapter 8: EXEC: Control From a Text File

D$ is (CONTROL)-(D).
Set the prefix.
Prepare the file to be written to.

Put these four commands into the
EXEC file DOIT.

Close the file.

After you have MAKE.DOIT and AWAY both saved in the
/EXAMPLES/PROGRAMS directory, type the command

to create the sequential text file named DOIT.EXEC . To see the
contents of DOIT.EXEC , you can once again use the program
GET.TEXT.

Now type the command

to cause the commands in the file DOIT.EXEC to be executed one
by one, just as if you were typing them—very quickly—from the
keyboard. This EXEC program displays the files in the
/EXAMPLES/PROGRAMS directory, which should include the files
MAKE.DOIT, DOIT.EXEC , and AWAY ; it displays the sentences
printed out by AWAY; and finally it displays a listing of the program
AWAY.

An All-Purpose EXEC Maker Program

Just as you can use GET.TEXT to look at an EXEC program, you

can use the program MAKE.TEXT to create one. The only problem
with this program is if you enter an erroneous line, there is no way
to change it. Just make sure each line is correct before you press

(RETURN).

Create an EXEC File Using BASIC

DS s (CONTROL)-(D).

Prepare to write to the file
LISTING.EXEC.

List the lines to the file.
Close the file.
End the program.

Listing a BASIC Program to a File

A far more useful application of the EXEC command is to capture
the listing of a BASIC program as a text file. Such a program can
be used

® to edit a program using a word processor
® to place part of a program anywhere in another program
® to insert subroutines from a subroutine file into a program

® to connect two programs.

The following version of the CAPTURE program captures

lines 2270 through 5130 of the program that is currently in
memory in a text file named LISTING.EXEC. Replace the line
numbers in line 5 of the program with the lines that you want to
save, and replace the filename LISTING.EXEC with the name of the
file in which you want the listing saved.

To use this program, you must already have a program in memory.
Add these lines to those of the program in memory. If your
program begins with line 10, you can add these lines with the same
line numbers; alternately, you can change the line numbers so that
they are all greater than the highest numbered line in your
program.

If you placed CAPTURE at the beginning of your program, run it by
typing

If CAPTURE is elsewhere in your program, type

where linenum is the number of CAPTURE’s first line.

Chapter 8: EXEC: Control From a Text File

D$ is (CONTROL)-(D).

Set the prefix.

Open, close, and delete
deletes POKER.EXEC
even if it didn’t exist.

Open POKER.EXEC.

Prepare to write to it.

First line number of program.

For each memory location,
increment counter.

Put 10 POKES on each line.

For first POKE on a line,

print the line number,

then increment line number.

Poke a byte.

Do next location.

New line for ProDOS command.
Then close POKER.EXEC.

All done.

Use EXEC to Combine Programs

Executing (EXEC) a file does not delete the program that is already
in memory. Therefore, if you have a program in memory, and you
EXEC a file that was created using CAPTURE, the lines from the
text file program are added to the lines that are already in memory.
This is a good way to combine programs or subroutines.

Machine Language to BASIC

Here’s a program that reads (PEEKSs) consecutive bytes of a
machine-language program, and for each byte places a POKE
statement into an EXEC program (POKER.EXEC). When the EXEC
program is run, a BASIC program containing these POKE
statements is entered into memory. You can use EXEC to place
these lines into an existing BASIC program, or you can use EXEC
to put them into memory when no other program is present and
save it as a separate BASIC program.

Listing a BASIC Program to a File m

To use this program, put the proper memory locations in line 90,
change the line number in line 80 if you wish, and then run it. It
creates the EXEC program POKER.EXEC (in the prefix directory).
Next type

and the lines containing the pokes are added to whatever BASIC
lines are already in memory.

The EXEC Command

Use the EXEC command to take commands or data (all non-file
input) from a sequential text file instead of the keyboard. It has the
form

EXEC pn [,F#] [,S#] [,D#]
The F# option allows you to skip the first # lines of the text file.

The EXEC program currently in memory is not affected by the
NEW command or the CLOSE command. An EXEC program
cannot be stopped by (CONTROL)-(C). If an EXEC program uses the
EXEC command to call another EXEC program, the second
program replaces the first.

If an EXEC program runs a BASIC program, and the BASIC
program contains a (non-file) INPUT statement, that input request
is satisfied by data from the EXEC file. If you interrupt a running
BASIC progam with (CONTROL)-(C), the remainder of the EXEC
program usually is not executed.

Monitor commands cannot be executed from within EXEC
programs.

The Options

pn pn indicates the file containing the EXEC program.

[,F#] # is the number of fields to skip at the beginning of the
EXEC file.

[,S#] The slot option has its usual meaning.

[,D#] The drive option has its usual meaning.

Chapter 8: EXEC: Control From a Text File

Chapter 9

Binary Files

145
145
147
148
148
150
150
151
151
152
152
153
153
154
154
155
155
156
157
158
158
159
160
161
162
162

About This Chapter
This Chapter’s Commands
Binary Files
Binary Addresses
The Memory Address Options—[,A#] [[E#] [,L#]
The File Position Option—[,B#]
The BRUN Command
The Options
For Example
The BLOAD Command
The Options
For Example
Using BLOAD With Non-Binary Files
High-Resolution Graphics With ProDOS
Installing Machine-Language Routines
The BSAVE Command
The Options
For Example
The PR# and IN# Commands
The Options
For Example
What PR# and IN# Really Do
ProDOS and the Monitor
Using a Clock/Calendar Card
System Programs
Starting Up a System Program

Chapter 9: Binary Files

o
.

.
.
.

. mﬁﬁ%
@Mw@fﬁ
.
fﬁg

.

.

@/5'
g

.

.
.
.

.
.
\éb;

.

.
.
.

.

- o
o .
s . N
. . .
. .

. . . | .
. .
. .

.

%ﬁ%

.

-

.
.
.
.
.
.
.
.
.
.
é@
.
.
.

.

.

-
.
.

.

%’j?s
-
-
.
.
«g

.

.

.
-
.
.
.
.
.
.
:
.

|
.
.

.
.
.
.

.
.
L
.
.
.
.
.
52%
.
.

.
.
.
.
.
.
‘Z’?
.
.

-
.
.

.

.

o
.
.
i

-
.

.

.
.
.

@i

o .
. .
o .
. L
. .
. .
. .

.
.
/
.

.
57
.

o
.
-
.
4%
.
o
.

.
. . .
o
-
L .
.

L
.
.
o
.
.
-
.
.
. .
.
.
.
.
.
.
.

.

.

-

.
.

.

. .
. .
.

.
.
.
.
.
.
.
.
.
-

.

.
.

. .
.
.

.
.
.

.
.
é‘;

MMW

.
.
.
n

.
.
.

%

.
.

;f’?
.
.
.
-
.
|

- o
.
.
. L
. . .
i .

L

.

.
ﬁ

@@

o
.

.

.
.
.
0
v
. /zw@/@\%ww/\ﬁ%%%m .
. .

.

.
. .
. . L .
-

L
-
.
-

.
Ll

.
.
.
.

.
.

.
.

.

g/,
.
.
.

.

.
.

. .
L .
. .
L
.
.
o
L

@
g}

.

.
=
.
.
.

.
.
.
.
.
L
.

o
.
-
.
.
.
o

.
.
.
.
.
e;/’,’

L
. . . L
. .
. .
. . .
- - . L
o @gﬁw@ - .
. . .
. -
.

.
.
.

.

.
.

.
o
a0
.

.
.
.

.

.
.
.

.
.

.

.
.
.

.

.

.

.

.
.
.
.
.

.

.
.
.
.
|

.

.

.
.
.

o
-
.
.

.
|
:;g
.

.

.
4.,
.
.
-

.
L
.
.
.
.
.

.
.
.
.
9;@{;@
.
.
.
.
.
.
.
.

.

.

.
.
4\
.

.

.
.
.
.
.
.
.
.
.

"

.
. . . .
o . .
. . . .
. | .
. .
.
. .
.
.
.
. o
. o
L .
. .
. .
. .
.

.

.
.

.

. a0
. .
o 7
.

.

.
.

o
.
57.6

Chapter 9

The BRUN command: see also the
DASH command, Chapter 4.

Binary Files

About This Chapter

This chapter describes the ProDOS commands that let you use
binary programs and binary files on your disks. If you want only to
run binary programs that are already on your disks, refer to the
DASH (-) command in Chapter 4. This command moves any type
of program from a disk file into memory and then starts it running.

The commands in this chapter can be used

e to load, run, and save binary programs

® to use binary programs to read and write characters.

This chapter also explains about system files and programs that
are written in machine language. The end of this chapter has a
section on ProDOS and the Monitor, and another section that

explains how you can connect ProDOS to a clock/calendar chip so
that files can be dated.

This Chapter’s Commands

This chapter’s commands are summarized below.

BRUN Run a binary program from a file

Use this command to transfer binary data from a binary disk file
(type BIN) to a specified portion of memory; the program then
executes automatically.

BLOAD Read binary data from a file

Use this command to transfer binary data from any disk file to a

specified portion of memory. Binary data is typically a machine-
language program or a picture for one of the graphics screens.

This Chapter’s Commands m

Figure 9-1. BRUN, BLOAD, and BSAVE

146

BSAVE Save binary data in a file

Use this command to transfer binary data from a specified portion
of memory to any type of file. Data anywhere in the Apple II's
memory can be transferred to a file.

o ™~
/ AN BLOAD
/ Fa\
/ N
/ ¢ Binary \\
‘ \ file \ BRUN: BLOADs
————l l a file, then runs
\ (l Binary // the loaded program
\ © _file N
\\ \\/;/ Memory
AN 7 BSAVE
~ ’//

PR# Use a binary program to print characters

You use this command most often to send output to a device in a
slot. You can also use it so a binary program is used in place of the
normal character output routine.

IN# Use a binary program to read characters

You use this command most often to read characters from a

device in a slot. You can also use it so a binary program is used in
place of the normal character input routine.

Chapter 9: Binary Files

Figure 9-2. PR# and IN#

PR#: Send data using
your output routine.

Er

eRINT PRINT

INPUT INPUT Q

IN#: Get data using
your input routine.

*Memory arrangement is arbitrary.

Binary Files

ProDOS allows you to store on disk, and retrieve from disk, the
information in your Apple II's memory. You have already seen the
ProDOS commands RUN, LOAD, and SAVE: these commands deal
with the contents of the BASIC program memory, interpreted as
BASIC programs. The ProDOS commands discussed in the next
three sections—BRUN, BLOAD, and BSAVE—perform similar
functions, but they deal with the information in any part of the
Apple II's memory, in its uninterpreted form.

Binary Files

The DASH command: see Chapter 4.

The B before the commands BRUN, BLOAD, and BSAVE, stands
for binary. Each command transfers binary information, zero-for-
zero, and one-for-one, between memory and a file. From now on
these commands are called the binary commands. The
information that the binary commands transfer is often a machine-
language program or a high-resolution picture from one of the
Apple II's graphics screens, but it can be any information that is in
memory or on a disk.

The two most common uses of the binary commands are: running
binary programs, and bringing binary images into memory for
display. You can run a binary program using the DASH (-)
command. If you have a file that contains a binary picture, you can
move it to the graphics page from which it was transferred by the
BSAVE command without having to understand the memory
addresses involved. If you want to do this, use the example in the
section on the BLOAD command.

Binary Addresses

If you are going to be using the binary commands only to run
machine-language programs that already exist, you don’t have to
understand the organization of the Apple II’'s memory. If, however,
you want to save a graphics screen to a file, or if you want to work
directly with the binary information in memory or in a file, you need
to know a little about memory addresses.

Your Apple II’'s memory is a continuous sequence of memory
locations, or bytes, each having an address. The address of the
first memory location is O (written as $0000 in hexadecimal), the
address of the second memory location is 1 ($0001), and so on. If
your Apple Il has 64K of memory, the address of the last memory
location is 65535 ($FFFF).

The Memory Address Options—[,A#]1[LE#][,L#]

When you use a binary command to save binary information, you
must give the address of the first memory location that contains
information to be saved. The starting memory address is
determined by the address option, A#.

You must also give the number of memory locations to be saved.
You can do this using the length option, L#, which is the number of
memory locations, or bytes, to be saved; or you can do it using the
end address option, E#, the address of the last memory location
to be saved.

Chapter 9: Binary Files

Figure 9-3. Memory Address Options
A#, E#, and L#

For example, if you want to save high-resolution graphics screen 1°
in a file, you must save the information that is in memory locations
8192 through 16383 ($2000 through $3FFF). Thus, to specify the
start address, you can give the address option in decimal or

hexadecimal

or

and you can give the address of the last byte to be transferred
using the end address option, as in

or

Alternately, if you like subtraction, you can use the length option to
give the number of bytes to be transferred, as in

or

You can calculate the value for the length option by subtracting the
start address from the end address and adding one.

The relationship between these three options for high-resolution
graphics screen 1 is shown in Figure 9-3.

Memory Address Memory
E#: 16383 ($3FFF) End Address
Hi-Res Graphics Screen #1 T
L#: 8192 ($2000) Length
L# (length) = E# - A# + 1 l
A#:8192 ($2000) Start Address
0 ($0000)

Binary Addresses m

See Chapter 4 for the DASH command.

The File Position Option—[,B#]

If you don’t want to start the transfer of information with the first
byte in a file, you can use the byte option, B#, to indicate the
number of the first byte to be transferred.

For example, if you have two high-resolution pictures in a binary
file, the first picture starts at byte 0 ($0000) in the file, and the
second picture starts at byte 8192 ($2000) in the file. To address
the second picture in the file, use the byte option

If you use the byte option, you must also use the length option, L#,
or end option, E#, to specify the number of bytes to be
transferred. If you don’t, the entire file is transferred.

The BRUN Command

To run a binary program that is stored in a binary disk file
(type BIN), use the command

BRUN pn [,A#] [,B#] [,L# | E#][,S#][,D#]

When ProDOS sees this command, it transfers the file indicated by
pn into memory, as determined by the options, and then runs the
program. If the A# option is not used, the program is placed in
memory starting at the address from which it was transferred
using BSAVE.

Warning

ProDOS cannot tell the difference between a binary program and binary
data such as a picture file. If you give names to binary files that indicate
their contents, such as adding .PIC to the end of all picture files, it is less
likely that you will accidentally run a non-program file. If you ever run a
non-program file, parts of ProDOS might change; if this happens, it is a
good idea to restart ProDOS.

You can also run a binary program using the DASH command.

Chapter 9: Binary Files

The Options

pn

LA#]

[18#]

[,L# | E#]

[13#]

[.D#]

pn must indicate a binary file (type BIN). If you use
only this option, the entire contents of the binary file
indicated by pn are placed into memory starting at
the address from which they were transferred using
BSAVE.

You can see the address from which a file was
transferred by BSAVE if you use the CATALOG
command. This address is given, in hexadecimal, in
the column labeled -, and it has an A in
front of it.

is the memory address into which the first byte of
the program is to be transferred. It is not useful to
use an address that is greater than the maximum
memory address of your Apple Il.

is the number of the first byte in the file to be
transferred. If you don’t use this option, the first byte
transferred is the first byte in the file, byte 0 ($0000).

To load and run a portion of a file, use one of these
options. L# is the number of bytes to be transferred;
E# is the last memory address into which the
program is to be transferred. If you include both of
these options, the last in the list is used.

The slot option has its usual meaning.

The drive option has its usual meaning.

For Example

With ProDOS started up, and the /EXAMPLES disk in drive 1, run
the binary program /EXAMPLES/PROGRAMS/SURPRISE using
the command

Now try running it using the address option

The BRUN Command m

Moving a binary image of any type of
file into memory is discussed in the
section “‘Using BLOAD With Non-
Binary Files.”

The BLOAD Command

To transfer binary information from a disk file to your Apple II's
memory, use the command

BLOAD pn [,A#] [,B#] [,L# | ,[E#] [, Ttype] [,S#] [,D#]

You can transfer information from any file type (the Ttype option),
starting at any position in the file (the B# option), to any part of the
Apple II’'s memory (the A#, L#, and E# options).

You can use the BLOAD command

® to transfer a machine-language program from a file to memory
® to move a picture from a file to a graphics screen

® to move the binary image of any type of file into memory.

If you plan to write programs that use machine-language routines
or high-resolution pictures, you need to take special precautions.

The sections ‘““High-Resolution Graphics With ProDOS” and
“Installing Machine-Language Routines’ address these issues.

The Options

If you give this command using only the filename option, the file
indicated by pn must be a binary file (type BIN). The entire
contents of this file are placed into memory starting at the address
from which it was transferred by BSAVE.

pn Unless you use the Ttype option, pn must indicate a
binary file. If you use Ttype, pn can indicate any type
of file. If you use the BLOAD command to transfer a
non-binary file into memory, you must use the
A# option.

[LA#] # is the memory address into which the first byte of
the binary data is to be transferred. You must use this
option if you use BLOAD to load a non-binary file. If
you use the BLOAD command to load a binary file
without this option, the file is placed in memory
starting at the address from which it was transferred
by BSAVE.

[,B#] # is the number of the first byte in the file to be

transferred. If you don’t use this option, the first byte
transferred is the first byte in the file, byte 0 ($0000).

Chapter 9: Binary Files

D$ is (CONTROL)-(D).
Display Page 1.

Load picture.

Restore text.

To clear the graphics page: see the
section ‘‘High-Resolution Graphics
With ProDOS.”

Token: an encoded element that
represents a BASIC keyword.

[,Ttypel type is the three-letter abbreviation that indicates the
type of file to be transferred. If no type is specified,
the file must be of type BIN.

[[L#|,E#] To transfer a portion of a file into memory, use one of
these options. L# is the number of bytes to be
transferred. E# is the last memory address into which
the data are to be transferred. You cannot use both
these options in the same command.

[,S#] The slot option has its usual meaning.

[,D#] The drive option has its usual meaning.
For Example

With ProDOS started up, and the /EXAMPLES disk in drive 1, set
the prefix to /EXAMPLES/DATA using the command

Now display high-resolution Page 1 and load in a picture by typing
and running this program:

To display text again (and to clear the graphics page), simply press

(RETURN).

Using BLOAD With Non-Binary Files

When ProDOS places information in a file, the command that you
use to save the information determines the format of the
information in the file. For example, a BASIC program is saved as
a set of BASIC tokens.

To see how a file is stored, and to work with the file in its
uninterpreted form, use the BLOAD command with the Ttype
option. For example, instead of manually changing every instance
of a variable in a BASIC program, write a program that does it for
you. Let the program use the BLOAD command to bring a BASIC
program into memory, change all references to the variable, then
save the program back to its BASIC file using BSAVE (with Ttype).

The BLOAD Command

Refer to the Applesoft BASIC
Programmer’s Reference Manual to see
how to use HIMEM and LOMEM to
protect the graphics page.

A

Refer to the ProDOS Technical
Reference Manual for more details on
machine language.

High-Resolution Graphics With ProDOS

ProDOS does not ever prevent BASIC programs from overlapping
the high-resolution graphics pages. To use high-resolution
graphics Page 1 for graphics, use the HGR command; to use high-
resolution Page 2 for graphics, use the HGR2 command.

Warning
On an Apple lle, you cannot BLOAD data into high-resolution graphics
page 2 while 80-column text is being displayed.

When you finish using the graphics pages, use the TEXT
command: the BASIC program moves back down into place. When
you use the TEXT command, the contents of the graphics pages
are lost.

By the Way: If you want to go from high-resolution mode to text mode

“and back again without affecting the contents of the graphics pages,
use the POKEs described in an appendix of the Applesoft BASIC
‘Programmer’s Reference Manual.

Warning
If your program halts—due to a STOP statement, an error, or a

(CONTROL)-(C)typed from the keyboard—while you are using HGR or
HGR2, do not attempt to continue the program using the CONT

command. Type the CLOSE command, and run the program again.

Installing Machine-Language Routines

Because of the way ProDOS uses memory, it is difficult to predict
which parts of memory are free to hold machine-language
routines.

When ProDOS opens a file, it moves HIMEM down 1K and places a
1K file buffer where HIMEM used to be. It then marks that
1024-byte portion of memory as used in the system bit map.

To place a routine in memory, you must do the same thing: move
HIMEM down by a multiple of 256 bytes, transfer the routine by
using BLOAD, and then mark the used portions in the system bit
map.

Warning

You must do this before any files are opened. This ensures that ProDOS
places all file buffers below your routine, so your routine won’t be closed
instead of a file.

Chapter 9: Binary Files

The BSAVE Command

To transfer binary information from your Apple II's memory to a
disk file, use the command

BSAVE pn ,A# ,L# | E# [, B#] [, Ttype] [[S#] [,D#]

You can transfer information from any part of memory (the

A#t, L#, and E# options) to any type of file (the Ttype option),
starting at any position in the file (the B# option).

You can use the BSAVE command

® to transfer a machine-language program from memory to a file
® to move a picture from a graphics screen to a file

® to move any portion of memory into any type of file.

The Options

When you use this command, you must use the pn, A#, and either
the L# or the E# options.

pn Unless you use the Ttype option, pn must indicate a
binary file. If you use Ttype, pn can indicate any type of
file.

AH You must use this option every time you use the BSAVE

command. A# is the memory address from which the
first byte of data is to be transferred.

,L#|,E# You must use one of these two options every time you
use the BSAVE command. L# is the number of bytes of
memory to be transferred. E# is the last memory
address from which data are to be transferred.

[,B#] B# indicates the first byte in the file to which data is to
be transferred. If you don’t use this option, the first
byte is transferred to the first byte in the file,
byte 0 ($0000).

[,Ttypel type is the three-letter abbreviation that indicates the
type of file to be transferred. If no type is specified, the
file must be of type BIN.

[,S#] The slot option has its usual meaning.

[,D#] The drive option has its usual meaning.

The BSAVE Command

Turn on Page 1.
Load PICTURE.
Save PICTURE.

BLOAD the system program starting
at 8192.

Create a new system file.

BSAVE the data from 8192 to the
ENDFILE shown by CATALOG.

BLOAD the BASIC.SYSTEM file.
Create a new system file.
BSAVE the data.

156

For Example

This example loads a picture into graphics Page 1 and then saves
it back into the same file. With ProDOS started up and the
/EXAMPLES disk in drive 1, set the prefix using the command

Now, load the picture into high-resolution Page 1 and then save it
using these commands

As a slightly more sophisticated example, here is how to move the
files PRODOS and BASIC.SYSTEM from one disk to another using
BLOAD and BSAVE. Assume that you are transferring the files
from the volume /EXAMPLES to the volume /NEW.BOOT .

First type - to see how long the two files
are. This is just part of the flrst two lines of a sample catalog:

Here is how to perform the transfer:

The start address, A8192, was chosen arbitrarily.

Warning

Beware, however—this process destroys anything that was in the region
of memory into which the BLOAD command placed the data.

Chapter 9: Binary Files

Refer to the Apple Il or Apple lle
Reference Manual for more details
about accessory-card ROM space.

Output routine at location $300.

Restore output to console.

Assign slot 2 to slot 1.

The PR# and IN## Commands

In addition to setting up the Apple Il to do input or output with a
slot, the PR# and IN# commands are also used to send characters
to a machine-language program. The entire syntax of these
commands is

PR# snum [,A#] or PR# A#
IN# snum or IN# A#

in which the option can either be the slot number (snum), the slot
number followed by the address of the routine to be associated
with that slot (A#), or just the address of a routine to be used (A#).

For example, if a character output routine is stored starting at
memory location $300, you can use this command to activate the
routine for subsequent output:

The first byte of the routine starting at location $300 must be a
6502 CLD instruction (216, $D8). When you want to stop using this
routine, you can use this command to restore output to the
console:

In addition, this same output routine can be associated with slot 2
using this command:

Subsequent references to slot 2 are actually directed to the
routine at $300. To restore slot 2 to normal operation, use the
command

Use this form of the PR# command to remap physical slots from
one slot number to another. For example, if you have printers in
slots 1 and 2, and a program that expects the printer to be in

slot 1, you can use the printer in slot 2 with your program by using
the command

before running the program.

The PR# and IN# Commands

0300: CLD
0301: JMP $FDFO

Continue BASIC,

Output routine at $300.

Warning
PR# and IN# are both ProDOS commands. When used from within a

program, they must be preceded by a (CONTROL)-(D). Failure to do so
causes the commands to be ignored.

The Options

snum snum can have any value from 0 to 7. If shum is 0, normal
input or output to the console (keyboard and screen) is
restored. If shum is from 1 to 7, the Apple Il does
subsequent input or output operations with the device in
that slot.

A# # is the address of the routine that you want to use as the
character input or output routine. The first byte of the input
or output routine must be a 6502 CLD instruction.

For Example

The first instruction of the input or output routine to be used must
be a 6502 CLD instruction. As an example, put a two-line output
routine starting at memory location $300. It consists of a jump to
the normal Monitor output routine, located at memory

address $FDFO.

With ProDOS started up, enter the Monitor with the command

and type

Now re-enter BASIC by pressing

(coNTROL)-(C)

and then pressing (RETURN). Enter the ProDOS command

Chapter 9: Binary Files

and all subsequent output will be sent by the routine at

location $300. This routine jumps into the normal character output
routine, so characters are printed in their normal fashion. Type a
few lines of BASIC, such as

and you see that characters are indeed printed on the screen.

What PR# and IN# Really Do

This section explains the way the Apple Il normally sends and
receives characters; thus you will see how PR# and IN# work. The
Apple Il has two memory locations, named CSWH and CSWL, in
which it stores the memory address of the routine that outputs
characters. Together, these locations are called the monitor
output link—they link the monitor to an output routine. It also has
two memory locations, named KSWH and KSWL, in which it stores
the memory address of the routine that inputs characters. These
are called the monitor input link.

The monitor output link normally contains the address of the
Apple II's standard output routine, COUT 1; the monitor input link
normally contains the address of the Apple II’'s standard input
routine, KEYIN. These two routines send characters to the screen
and read them from the keyboard, respectively. When you use
PR# or IN# from BASIC, without ProDOS, the monitor links are
set to indicate the ROM on the card in the indicated slot ($Cn00
for slot n). Thus, when the Apple Il inputs or outputs a character, it
calls the input or output routine in the card’s ROM to perform the
transfer.

While ProDOS is running, the monitor I/0 links, instead of
containing the addresses of the standard input and output
routines, contain the addresses of the ProDOS input and output
routines. ProDOS keeps the addresses of the standard input and
output routines in the ProDOS input and output links. As you might
expect, the ProDOS input and output links normally contain the
addresses of the Apple II’s standard input and output routines,
KEYIN and COUT1.

The PR# and IN# Commands

When you use PR# or IN# with a slot number, ProDOS replaces
the contents of the proper ProDOS link with the address of the
ROM on the card in the indicated slot ($Cn00 for slot n). When you
use PR# or IN# with an address, ProDOS simply places that
address in the proper ProDOS link. When the Apple Il tries to
output or input a character, the monitor output or input links
indicate the proper ProDOS routine, then the ProDOS routine
does a two-stage transfer:

1. It moves the addresses of the current I/0 routines from the
ProDOS 1/0 links to the monitor 1/0 links. Then ProDOS calls
the Apple II’'s normal 1/0 routines which use the current
routines to perform the transfer.

2. ProDOS reconnects itself by placing the addresses of its
I/0 routines into the monitor 170 links.

Not only does ProDOS have input and output links for normal 1/0,
it also has them for each of the slots. When you use the PR# or
IN# command with snum and A#, the specified address is placed
in the links for that address.

ProDOS and the Monitor

If you like to play around with the Apple II’s internals, you
occasionally find yourself (intentionally or otherwise) in the
Monitor. The Monitor is the program within the Apple II’'s Read
Only Memory that controls many of the Apple II’s vital functions.

First, to enter the Monitor from BASIC, type

and you see the monitor prompt

All ProDOS commands still work from within the Monitor. For
example, type

and you see a normal catalog displayed on the screen. Likewise,
the PR# command still starts up a disk from the Monitor. An error
in a ProDOS command issued from the Monitor returns control to
BASIC.

Chapter 9: Binary Files

Figure 9-4. ProDOS Date and Time
Locations

Re-enter BASIC by pressing

(CoNTROL)-(C)
and then pressing (RETURN).

Using a Clock/Calendar Card

Each time you update a file, ProDOS performs a JSR (jump
subroutine) to memory location 48902 ($BF06). This is the entry
into the DATETIME routine. If there is no DATETIME routine
installed, there is an RTS in this location.

If, however, ProDOS sees a Thunderclock in one of the slots, it sets
up a routine and places a jump into the routine for you. If you want
to use another type of clock/calendar card with ProDOS, you have
to write your own routine, and place it in memory each time you
start up ProDOS.

The routine must read the date and time from the card and place
this data in bytes 49040 through 49043 ($BF90 through $BF93)
using the following format:

49041 ($BF91) 49040 ($BF90)
7 6 543 210 7 6 5 4 3 2 10
1 1]] 1 1 1 1 |
| N S B B S e
Date year | month | day
I T S N NN T T O TN T O O T N
—T—T—TTT Tt T
7 6 54 3 2 10 7 6 5§ 4 3 2 10
] 1 l l 1] 1 1 l] 1 1 1 1 |
Tt Tt T
Time hour || minute
TN S S T TN T TN N T SN T T S B
T T T T T
49043 ($BF93) 49042 ($BF92)

A jump to the starting address of the routine must be stored in the
entry to the DATETIME routine (48902) $BF06.

By the Way: The TIME program described in Appendix D does not
change the time indicated by a clock/calendar card. It merely changes
the system date and time locations described above.

Using a Clock/Calendar Card

SEPSTEEEEEERER " System Programs

By now you have undoubtedly wondered why ProDOS is divided
into two files—PRODOS and BASIC.SYSTEM—and what the
relationship is between these two files.

The file PRODOS contains the most essential parts of ProDOS:
routines that perform communication with disk drives in a
compact and versatile way. The BASIC.SYSTEM file contains
routines that let you communicate with disk drives through BASIC
programs. When you use ProDOS BASIC, both these files are in
memory and in use.

It is possible for other assembly-language programs to make use
of the versatile routines in the PRODOS file without the overhead
of having the BASIC.SYSTEM file in memory. Such programs are
known as system programs. ProDOS BASIC, the ProDOS Filer,
and the DOS-ProDOS Conversion Program are all system
programs.

You can recognize a system program by its file type, SYS,
displayed by the CAT or CATALOG command. Every system
program provides some way to switch from itself to another
system program. From ProDOS BASIC, you run another system
program using the DASH (-) command. From other system
programs, you usually switch to another system program by using
the Quit command.

Starting Up a System Program

When a disk starts up, the PRODOS file is first loaded into
memory. Next a system program is loaded into memory. Then
ProDOS scans the disk for the first file having the name
XXX.SYSTEM (XXX can be combinations of letters and numbers
that form a valid ProDOS filename). If it finds such a file, it loads it
into memory and runs it. Otherwise it loads the first file of type SYS
on the disk and runs it.

If there is no program of type SYS on the disk, an error message is
displayed.

Chapter 9: Binary Files

Summary of ProDOS

167 Features of ProDOS

168 Filenames

168 Pathnames

169 Syntax

170 Summary of the Options
173 ProDOS Commands in Programs
173 Filing Commands

173 CATALOG and CAT

174 PREFIX

175 CREATE

176 RENAME

176 DELETE

177 LOCK

177 UNLOCK

178 BASIC Program Commands

178 — (DASH)
178 RUN

179 LOAD
180 SAVE

180 Programming Commands
180 CHAIN
181 STORE
182 RESTORE
182 PR#

183 IN#

184 FRE

Appendix A: Summary of ProDOS

Appendix A

184
184
185
186
186
187
188
188
189
189
190
190
191
192

Text File Commands
OPEN
CLOSE
READ
WRITE
APPEND
FLUSH
POSITION
The EXEC Command
EXEC
Binary Commands
BRUN
BSAVE
BLOAD

Appendix A: Summary of ProDOS

Appendix A

Summary of ProDOS

Features of ProDOS

Here is a list of some of the features of the ProDOS machine-
language interface. These features are fully discussed in the
ProDOS Technical Reference Manual. They are the basis upon
which ProDOS is built.

® A directory-based filing system

® Up to 51 files in a volume directory; the number of files in other
directories is limited only by space on the disk.

e Up to 32 megabytes per volume

e Up to 16 megabytes per file

e 20 different file types (ten of them user-defined)

® Up to eight files can be open at a time

® A defined, usable machine-language interface

® A defined interrupt protocol

® File structures compatible with Apple 1l SOS

® Fast transfer rate—reads about 8K per second from Disk Il
® Supports all Apple Il disk devices

An understanding of these features is not essential to the
summary of ProDOS that follows.

Features of ProDOS 167

Ry Filenames

A ProDOS filename is up to 15 characters long. It can contain
uppercase and lowercase letters (A-2Z), digits (0-9), and periods (.),
and it must begin with a letter. Lowercase letters are automatically
converted to uppercase.

A filename must be unique within its directory. Some examples are

ANGLOFILE
BALLOON
LETTER.TEXT

Pathnames

A ProDOS pathname is a series of filenames, each preceded by a
slash (/). The first filename in a pathname is the name of a volume
directory. Successive filenames indicate the path, from volume
directory to the file, that ProDOS must follow to find that particular
file. The maximum length for a pathname used in a command is
64 characters, including slashes.

Examples:

/EMPLOYEES/MARKETING/DIVISION. 1
/SPORTS/FOOTBALL/THE.49ERS/QUARTERBACKS/MONTANA
/BIGDISK/RECORDS/MAY/JELLY.BEANS

Any command that requires you to name a file will accept a
pathname or a partial pathname. A partial pathname is a portion
of a pathname that doesn’t begin with a slash. The maximum
length of a partial pathname is 64 characters, including slashes.

These partial pathnames are all derived from the sample
pathnames above:

MARKETING/DIVISION.1
DIVISION.1
THE.49ERS/QUARTERBACKS/MONTANA

When you use a partial pathname, ProDOS does one of two things.
It usually adds the prefix, a pathname that indicates a directory, to
the front of the partial pathname to form a complete pathname.
But if the prefix is empty, or if you use either the slot option or the
drive option (described in the section ‘“Syntax’’) in the command,
the name of the volume specified by the slot and drive options is
used instead of the prefix.

Appendix A: Summary of ProDOS

Table A-1. ProDOS Command Options

For the partial pathnames listed above to indicate valid files, the
prefix should be set to /EMPLOYEES/,
/EMPLOYEES/MARKETING/, and /SPORTS/FOOTBALL/,
respectively. The maximum length for a prefix is 64 characters.
You set the prefix using the PREFIX command.

Syntax

The syntax, or structure, of each ProDOS command is a command
word followed by a list of options, as in

SAVE pn [,S#] [,D#]

The command word (SAVE in this example) is followed by a list of
options. Unbracketed options must be included each time the
command is used. Options in square brackets, [and |, are
optional, and can be used in any order. Options separated by a
vertical bar are alternates: use one or the other, not both (if both
are entered, ProDOS uses the second in the list).

Uppercase letters and commas indicate characters that must be
typed as shown; lowercase letters and the number symbol, #,
stand for items that you supply.

Table A-1is a summary of the command options. The next section
contains a description of each of the options.

Name Syntax Minimum Maximum Examples
Pathname pn 4 * /DISK/RECORDS/JAN
Slot Number S# 1 7 ,S1 ,S3
Drive Number D# 1 2 D ,D2
Number of Fields F# o 65535 ,F2 ,F10
Record Number R# 0 * ,R59 ,R3982
Number of Bytes B# 0 * B2 B7
Address in RAM An 0 65535 ,A512 ,A4096
Length in Bytes L# 1 65535 ,L10 ,L16384
End Address in RAM E# 1 65535 ,E776 LE32768
At Line Number 0 0 65535 ,@10 ,@322
Slot Number snum 0 7 1 3

File Type ,Ttype * * ,TDIR JTTXT

* See the description below

Syntax m

#

pn

Summary of the Options

Decimal or Hexadecimal Integer. # can be replaced by a
decimal integer, or it can be replaced by a hexadecimal
number by preceding the hexadecimal digits with a
dollar sign. The permitted values of # depend on the
option.

Pathname or Partial Pathname. See the section
“Pathnames.”

Slot Number. # specifies an Apple Il slot that contains a
disk controller card. # initially defaults to the slot from
which ProDOS was started up. It subsequently defaults
to the last value specified for this parameter. # must be
in the range 1 through 7.

If # refers to a slot which does not contain a disk
controller card, you will get the #ii i Ti0E
error message.

Drive Number (either 1 or 2). # initially defaults to one.
It subsequently defaults to the latest value specified for
this parameter.

If ,S# is used without this option, ,D# defaults to one.
If # refers to a drive that doesn’t exist on the controller

card in the indicated slot, you get the !
error.

Number of Fields. Used with sequential and random-
access text files. # specifies a field whose position in
the file is # fields ahead of the current file position.

defaults to 0, which does not change the file position.
Note: EXEC always sets the pointer to the start of the
named file, so # is always relative to 0 when used with
EXEC. Although # has a maximum value of 65535, if

specifies a position past the end of the record or the
end of the file, the position pointer stops at the end of
the record or file, and the error message
is returned.

For DOS compatibility, both the options ,F# and ,R#
indicate a number of fields when used with the EXEC or
POSITION commands.

170 Appendix A: Summary of ProDOS

R#

,B#

L#

Record Number. Used with the READ and WRITE
commands for random-access text files. # defaults to 0
after OPEN. Thereafter, it defaults to the last record
specified. # points to an absolute record within a
random-access file. The maximum record number is

16 megabytes divided by the file’s record length,

or 65535, whichever is smaller.

Number oi Bytes. # defaults to 0. # indicates a position
in a file whose poscition is # bytes ahead of the current
position. For READ and WRITE it is evaluated after the
,F# option, and the maximum byte number is record
length minus one. If it indicates a position past the end
of record or file, the position is left at the end of the
record or file, and the i error message is
returned.

For BRUN, BLOAD, and BSAVE, it is always used
relative to the beginning of the file. If it indicate
position past the end of the file, th
error message is returned.

Address in RAM. For BRUN, BLOAD, and BSAVE,

indicates a starting memory address for the transfer
of binary information. If BLOAD does not specify this
parameter, the value of A# defaults to that used when
the binary file was transferred using the BSAVE
command. For PR# and IN#, # specifies the memory
address of a machine-language driver routine. # must
be in the range 0 through 65535.

Length in Bytes. # defaults to 1. In the OPEN and
APPEND commands with random-access files, ,L# is
required and specifies the record length in bytes. When
used with the BRUN, BLOAD, and BSAVE commands,
specifies the number of bytes to be transferred
between the Apple II's memory and a file. # must be in
the range 0 through 65535. With the binary commands
,E# can be used instead of ,L#.

End Address in RAM. This is an alternative to the

,L# option for BRUN, BLOAD, and BSAVE. # indicates
the last memory address for the transfer of binary data.
Either ,L# or [E# is required for BSAVE. If neither is
used with BRUN or BSAVE, bytes are transferred until
the end of the file. # must be in the range

0 through 65535.

Summary of the Options m

Table A-2. The File Type Abbreviations

172

,@QH At Line Number. # indicates the number of the first
program line to be executed by the RUN or CHAIN
command. The default is the first line in the program. If
there is no line with the number #, an error is returned.

snum Slot Number. snum is used with the IN# and PR#
commands. It can have any value from 0 through 7.
snum is the slot number of the device with which
subsequent data (either input or output) is to be
transferred. An snum of 0 specifies the Apple II’s
normal routines for 1/0.

,Ttype File Type. type is a three-letter abbreviation that
indicates the type of file specified by the command. The
possible values for type are given in Table A-2.

Abbreviation File Type
DIR Directory
TXT Text
BAS Applesoft Program
VAR Applesoft Variables
BIN Binary
REL Relocatable Code
* $F# User Defined
SYS ProDOS System File
SYS ProDOS System Program

* #is an integer from 1 to 8.

As an example, the ProDOS command that has the syntax
READ pn [,R#][[F#] [,B#]

can be interpreted as

by the following process. The command word READ is in
uppercase, and must be typed exactly as shown. The symbol for
the pathname pn is in lowercase; it is replaced by the pathname
1. The option ,R# becomes . 1 & indicating
that data is to be read from record number 100 of the random-
access text file which must already be open.
The option ,F# is replaced by . i indicating that the first two
fields in record 100 are to be read and discarded before any data
is taken from the record. The ,B# option is not used.

Appendix A: Summary of ProDOS

D$ is set to (CONTROL)-(D).
Print the command preceded by

(ConTROL)-(D).

Null ProDOS command.
D$ is (CONTROL)-(D).

List files in named directory.
List files in prefix directory.

List files in volume directory of slot 6,
drive 1.

ProDOS Commands in Programs

You can give all ProDOS commands from within programs, and
you can issue all except OPEN, WRITE, READ, APPEND, and
POSITION from the keyboard. If any ProDOS command in a
program is to be printed, it must be preceded by a printed
(conTROL)-(D), and the (CONTROL)-(D)must be the first character on

the printed line. Here is the most common way of printing a
ProDOS command preceded by a (CONTROL)-(D).

The WRITE, READ, and APPEND commands are terminated by the
next ProDOS command given. If you want to terminate one of
these commands without using a ProDOS command, you can use
the null ProDOS command

Filing Commands

This section contains a brief description of each ProDOS filing
command.

CATALOG and CAT [pn][[S#]1[,D#1]

Use the CATALOG and CAT commands in either immediate or
deferred mode.

Examples:

The CAT and CATALOG commands display a list of the files in the
directory indicated by pn, S#, and D#. If pn is not used, a catalog
of the prefix directory is displayed unless the prefix is empty or
S# or D# is used. In these cases the volume name indicated by
S# and D# is used instead of the prefix.

CAT displays a 40-column list containing the first five items

explained below, while CATALOG displays an 80-column list with
all eight items.

Filing Commands m

Set prefix to /PROFILE/WORKFILES/.

Set prefix to name of volume in slot 6,
drive 1.

Make prefix empty.
Display the prefix.

For each file in the directory these commands display from left to
right on the screen

® an asterisk if the file is locked (see the LOCK command)

® the file’s name

® a three-letter abbreviation of the file’s type (see Table A-2)
e the number of 512-byte blocks that the file occupies

® the date the file was last modified (Mo/Da/Yr Hr:Mn:Sc) (only
Mo/Da/Yr is displayed by CAT)

e the date the file was created (Mo/Da/Yr Hr:Mn:Sc)

® the /ogical end of file [see section “ENDFILE (Maximum File
Sizes)” in Chapter 3 and section “The End of File”’ in Chapter 7]

e the file’s load address (in hexadecimal) if it is a binary file, or its
record length (in decimal) if it is a random-access text file.

When you catalog a volume directory, the number of free blocks,
used blocks, and total available blocks on that volume are
displayed.

Possible Errors:

PREFIX [pn][,S#1[,D#]

Use the PREFIX command in either immediate or deferred mode.

Examples:

Appendix A: Summary of ProDOS

Create a new directory.

Create a binary file in volume
directory, S6, D2.

This command normally sets the value of the prefix, but if no
options are used, the value of the prefix is displayed. If the
command is used without options in a program, the next INPUT
statement reads the value of the prefix. If a slash is used in place
of pn, the prefix is set to empty; the volume specified by the
default slot and drive is then used as prefix. Otherwise the
standard rules for pn and the slot and drive options hold. The

maximum length for the prefix is 64 characters, including slashes.

Possible Errors:

CREATE pn [, Ttypel [,S#1[,D#]

Use the CREATE command in either immediate or deferred mode.

Examples:

Creates a file of the indicated type and name. Table A-2 shows the
different file types. This command is primarily used for directory
files. You must create a directory before saving a file in it.

Possible Errors:

Filing Commands

Delete EXPLETIVE file.

RENAME pn1,pn2[,S#1[,D#]

Use the RENAME command in either immediate or deferred mode.

Example:

Changes the name of the file indicated by pn1, S#, and D# to the
name indicated by pn2, S#, and D#. This command cannot move
a file from one directory to another; it can only change the name of
a file within its directory. You cannot rename a file that is locked.

Possible Errors:

DELETE pn [,S#]1[,D#]

Use the DELETE command in either immediate or deferred mode.

Example:

Removes the file indicated by pn, S#, and D# from its directory.
The file must not be open or locked. If the file is a directory file, it
must be empty. You cannot delete a volume directory.

If a program tries to delete a nonexistent file, ProDOS returns the
error message. To prevent this, open the file
(WhICh creates it if it doesn’t yet exist), close it, then delete it.

Possible Errors:

Appendix A: Summary of ProDOS

LOCK pn [S#]1[,D#1

Use the LOCK command in either immediate or deferred mode.

Example:

This command protects the file indicated by pn, S#, and D# from
being accidentally deleted, renamed, or changed. A locked file is
indicated in the catalog by an asterisk (*).

Possible Errors:

UNLOCK pn [[S#]1[,D¥#]

Use the UNLOCK command in either immediate or deferred mode.

Example:

If the file indicated by pn, S#, and D# is locked, you must unlock it
before you can alter, rename, or remove it.

Possible Errors:

Filing Commands

Run program in file /ANY/PROGRAM,
regardless of program type.

Load BASIC program from file AMOK in
prefix directory and run it.

Load BASIC program from file
TWO.IN.ONE in prefix directory, and
run it starting at line 1000.

BASIC Program Commands

This section contains a brief description of the BASIC program
commands.

- (DASH) pn[,S#1[,D#]

Use the DASH command in either immediate or deferred mode.

Example:

This command, called the DASH command, can be used in place
of RUN, BRUN, and EXEG,; it is the only command that runs a
system program. Thus, it can be used to run programs of types
BAS, BIN, TXT, and SYS (XXX.SYSTEM files). Note that everything
currently in memory is lost when a system program is invoked.
(See the RUN, BRUN, and EXEC commands for more details.)

Possible Errors:

RUN pn [,@#1[,S#1[,D#]

Use the RUN command in either immediate or deferred mode.

Examples:

Loads the Applesoft program in the file indicated by pn, S#,

and D# (see the discussion of LOAD, below), and then runs it.

If @# is used, then the program starts running at the specified line;
if that line is not found, the next highest line is run. Without @#,
execution starts at the program’s first line.

Appendix A: Summary of ProDOS

Bring BASIC program in file
DOW.JONES in prefix directory into
memory.

The RUN command, without any parameters, causes the BASIC
program currently in memory to be run.

Possible Errors:

BASIC Error:

LOAD pn [[S#Z1[,D#]

Use the LOAD command in either immediate or deferred mode.

Example:

This command tells ProDOS to search for the Applesoft program
file (type BAS) with the name indicated by pn, S#, and D#. If there
is such a file, its program is loaded into the Apple II's memory. The
program can then be changed, listed, run, or saved. LOAD closes
any open files (except EXEC files), and erases any BASIC program
in memory before placing the new program in the Apple II's
memory.

The instruction LOAD, without any parameters, attempts to load a
program from cassette tape.

Possible Errors:

BASIC Program Commands 179

Save current BASIC program in file
BABY.SEALS.

SAVE pn[,S#]1[,D¥#]

Use the SAVE command in either immediate or deferred mode.

Example:

If the indicated file does not exist, a file with the pathname
indicated by pn, S#, and D# is created, and the current Applesoft
program is stored in that file. If the file is locked, the I i i
error is returned.

Warning

If a file with the indicated pathname already exists, its contents are
replaced without warning by the current BASIC program. Always lock all
valuable files.

The instruction SAVE, without any parameters, attempts to save a
program onto cassette tape.

Possible Errors:

Programming Command's

This section provides a brief description of each of the BASIC
programming commands.

CHAIN pn [,@#1[,S#]1[,D#]

Use the CHAIN command in either immediate or deferred mode.

Example:

Appendix A: Summary of ProDOS

Store all BASIC variables.

Used from within a BASIC program, it loads and runs the BASIC
program specified by pn, S#, and D#, leaving the names and
values of all the current variables in memory. This means that a
program can operate on the results of the previous program, and it
can leave data for any subsequently chained program.

If the @# option is used, execution of the indicated file begins at
the specified line; if that line does not exist, the next highest line is
run.

Possible Errors:

BASIC Error:

STORE pn [,S#][,D#1

Use the STORE command in either immediate or deferred mode.

Example:

This command packs all the currently defined BASIC variables,
and writes them to the file (type VAR) indicated by pn, S#, and D#.
These variables may be returned to memory using the RESTORE
command.

Before storing Applesoft variables, ProDOS compacts the
Applesoft string space. This may result in a delay of two to four
seconds before the disk is actually accessed.

Possible Errors:

Programming Commands ﬂ

Load BASIC variables.

Send output to slot 1.
Send output using routine at $300.

Designate the ROM in slot 2 as the
output routine for slot 1. Does not
redirect output.

RESTORE pn [S#]1[,D#]

Use the RESTORE command in either immediate or deferred
mode.

Example:

This command clears the current BASIC variables from memory,
unpacks the variables stored in the variable file (type VAR)
indicated by pn, S#, and D#, and puts the variables in the BASIC
variable storage space in memory.

Possible Errors:

PR# snum|A#|snum ,A#

Use the PR# command in either immediate or deferred mode.

Examples:

This command is used to send output to a slot; to send ouput to an
address in memory; or to reassign the output address associated
with a slot. It operates by changing the address of the current
output routine (stored in memory locations $36 and $37). All
subsequent non-file output is sent, a character at a time, by the
routine at the specified address. If snum (a slot number) is used,
the address of the current output routine is set to indicate the first
byte of ROM on the card in that slot ($Csnum00). If A# is used, the
address is changed to #, and the byte at this address must be a
6502 CLD (clear decimal) instruction.

Appendix A: Summary of ProDOS

See the description of PR# in
Chapters 5 and 9 for more details; also
see the Apple Il Reference Manual.

Get input from slot 2.
Get input using routine at $300.

See the description of IN# in
Chapters 5 and 9 for more details; also
see the Apple Il Reference Manual.

Once the address of the output routine is changed, ProDOS
performs a jump to this new address. The first portion of the code
at that address normally performs initialization (such as starting
up the disk in that slot). The code then resets the output routine
address to indicate the true address of its output routine.

If both snum and A# are used, the specified address is assigned
as the output address for that slot. It does not redirect output: a
subsequent PR# snum must be used for this purpose.

Possible Errors:

IN# snum| A%

Use the IN# command in either immediate or deferred mode.

Examples:

This command tells the Apple Il to take its input from a slot or from
an address in memory. It operates by changing the address of the
current input routine (stored in memory locations $38 and $39). All
subsequent non-file input is taken, a character at a time, by the
routine at the specified address. If shum (a slot number) is used,
the address of the current input routine is set to indicate the first
byte of ROM on the card in that slot ($Csnum00). If A# is used, the
address is changed to #, and the byte at this address must be a
6502 CLD (clear decimal) instruction.

Once the address of the input routine is changed, ProDOS
performs a jump to this new address. The first portion of the code
at that address normally performs initialization (such as starting
up the disk in that slot). The code then resets the input routine
address to indicate the true address of its input routine.

Possible Errors:

Programming Commands

Open sequential file on drive 2 in
default slot.

Open random-access file with record
length of 100.

Open a directory file.

FRE

Use the FRE command in either immediate or deferred mode.

Example:

This command removes any data remaining from former programs
from the memory area used to store your program'’s string
variables; that is, it cleans house.

Possible Error:

Text File Commands

This section contains a brief description of each text file
command.

OPEN pn [L#][, Ttypel [S#]1[,D#]

Use the OPEN command only in deferred mode.

Examples:

This command allocates a memory buffer to the file indicated by
pn, S#, and D#, and prepares the system to write or read from the
beginning of the file. If the file did not previously exist, a text file is
created. L# specifies the file’s record length; if omitted, the record
length defaults to the record length with which the file was opened,
or to 1 for a new file.

Using Ttype you can open non-text files for reading and writing.
Non-text files must be created before they can be opened. You
must be careful when using this feature: the contents of non-text
files can be difficult to deal with when using BASIC strings.

Appendix A: Summary of ProDOS

Close all open files.
Close /P/NOSE.

The effect of CLOSE on an EXEC file:
see the section “The EXEC Command.”

For comparison, see the FLUSH
command.

Up to eight files can be open at a time. The commands OPEN, CAT,
CATALOG, and EXEC—and - (DASH) when you use it to execute
(EXEC command) a file—all open a file. Only OPEN leaves the file
open.

The memory buffer for an open file is 1024 bytes long. If there is
not enough free memory for a file’s buffer to be allocated, the file
cannot be opened.

Warning
A program must close all the files it opens. If it doesn’t, data written to the
file may be lost.

Possible Errors:

CLOSE [pn]

Use the CLOSE command in either immediate or deferred mode.

Examples:

The CLOSE command without options closes all open files (with
the exception of EXEC files: see EXEC). If pn is used, only the
specified file is closed. When a file is closed, any characters in the
output part of the file buffer are written to that file, and its file
buffer memory is released for other uses.

Warning

A program must close all files it opens. Failure to close an open file can
result in loss of data. If a program terminates because of an error,
because a (CONTROL)-(C)was pressed, or for any other reason, enter the
CLOSE command from the keyboard before you do anything else.

Possible Errors:

Text File Commands ﬁ

Prepare to read record 10 from
/EXAMPLES/HELPERS.

Skip 100 fields of the file BOOK and
prepare to read.

For more details on READ, see the
section ‘‘Reading From ProDOS
Directories,” Appendix D.

Prepare to write to start of record 29.

Prepare to write to current position in
file.

=

READ pn [LR#1[F#1[B#]

Use the READ command in deferred mode only.

Examples:

This command alters the current position and prepares input to be
taken from the indicated file. If R# is used, the current file position
is moved to the beginning of the specified record. If F# or B# is
used, the current position is moved forward the specified number
of fields and bytes.

Once this command is given, all characters asked for by INPUT or
GET statements in the program are taken from the specified file
starting at the file’s current position. Each INPUT statement is
ended by a carriage return character (ASCIl code 13) or 224 bytes,
whichever comes first. The READ command is terminated by the
next ProDOS command, or by the null ProDOS command, that is,

printing (CONTROL)-(D).

Warning
Due to the limitations of BASIC strings, the reading of non-text files may
not work as you expect it to.

If you open and read a directory file, you get back strings that are
identical in format to the lines returned by CATALOG.

Possible Errors:

WRITE pn [LR#]1[,F#1[,B#]

Use the WRITE command only in deferred mode.

Examples:

Appendix A: Summary of ProDOS

Prepare to write to end of file
MORE.INFO.

This command alters the current position, and prepares output to
be sent to the indicated file. If R# is used, the current file position
is moved to the beginning of the specified record. If F# or B# is
used, the current position is moved forward the specified number
of fields and bytes.

Once this command is given, all characters output by the program
or by BASIC are placed in the specified file starting at the file’s
current position. The WRITE command is terminated by the next
ProDOS command.

Although you can open directory files (type CAT), and read from
them, you cannot write to them.

Possible Errors:

APPEND pn [Ttypel [L#][,S#]1[.D#]

Use the APPEND command only in deferred mode.

Example:

This command opens the file specified by pn, S#, and D#, moves
the current position to the end of the file, and issues a WRITE to
that file. If L# is used (and is the same as the file’s original record
length), the current position is set to the beginning of the record
immediately following the last record in the file.

Once this command is given, all characters output by the program
or by BASIC are placed in the specified file starting at the file’s
current position. The WRITE part of the APPEND command is
terminated by the next ProDOS command.

Warning

Be sure that your program closes all appended files. Failure to do so may
result in loss of data.

Text File Commands

Read and discard 227 fields.

188

Possible Errors:

FLUSH [pn]

Use the FLUSH command in either immediate or deferred mode.

Example:

The FLUSH command without options causes all open files (with
the exception of EXEC files: see EXEC) to be flushed. If pn is used,
only the specified file is flushed. When a file is flushed, any
characters in the output part of the file buffer are written to that
file, and updated index and allocation buffers are copied to the
file’s directory.

Warning

The FLUSH command is useful for preserving the integrity of the data on a
disk. A program that may stop unexpectedly—whether due to power
surges or little kids—should flush its buffers frequently. This way you can
prevent much data from being lost.

Possible Errors:

POSITION pn ,F#\,R#
Use the POSITION command only in deferred mode.

Example:

POSITION causes # fields to be read and discarded. For
compatibility with DOS 3.3, the F# and R# options are 5
functionally equivalent.

Appendix A: Summary of ProDOS

Execute commands starting with the
fourth field of the file PRIVILEGE.

Other uses of EXEC are explained in
Chapter 8.

POSITION scans forward from the current position, character by

character, until it encounters the #-th (RETURN)character following
the current position. It then places the current position at the first
byte following this (RETURN)character. If, in this search, it finds any
byte in which no character has ever been stored (normally an end

of record or end of file), the messag i is given.

Possible Errors:

The EXEC Command

The format and a description of the EXEC command are given in
the section below.

EXEC pn [,F#|,R#1[,S#1[,D#]

Use the EXEC command in either immediate or deferred mode.

Example:

This command causes the Apple Il to take all (non-file) input from a
sequential text file instead of from the keyboard. This allows you to
use a text file containing BASIC or ProDOS commands, or input to
a running program to control the operation of your Apple II.

The file indicated by pn, S#, and D# must be a sequential text file
(hereafter referred to as an EXEC file). ProDOS opens the EXEC
file, reads and discards the number of fields specified by F#

or R#, and then starts reading commands at that position. When
the end of file is reached, the EXEC file is closed.

There can only be one EXEC command in effect at a time. If the
EXEC file contains an EXEC command, the original EXEC file is
closed and the new EXEC file is opened and executed. The CLOSE
command, when issued from within an EXEC file, does not cause
the EXEC file to close. If an EXEC file contains a RUN command,
EXEC waits until the program ends; then the next command in the
EXEC file is executed.

The EXEC Command

A Warning

If a program is running while an EXEC file is open, an INPUT statement in
the program reads its input from the EXEC file. Worse yet, if that response
is an immediate-execution ProDOS command, the command is executed
before the program continues.

By the Way: If you type (CONTROL)-(C)to stop an Applesoft program
that is running while an EXEC file is still open, the remaining
commands in the EXEC file are usually not executed.

For compatibility with DOS 3.3, the F# and R# options are
functionally equivalent.

Possible Errors:

Binary Commands

The binary commands are briefly described in the next sections.

BRUN pn LA#][B#][L#\,E#][,S#]1[,D#]

Use the BRUN command in either immediate or deferred mode.

Example:

The BRUN command loads the binary file (type BIN) indicated by
pn, S#, and D# into the Apple II's memory as specified by A#, B#,
and L# or E#. B# is the number of the first byte in the file to be
loaded. A# is the first memory address into which data is to be
loaded; L# is the number of bytes to be loaded, and E# is the last
memory address into which data is to be loaded (either L# or E#
should be used, not both). If A# is omitted, the file is loaded
starting at the address from which it was saved. Once loaded, the
file (which must be a machine-language program) is started by a
machine-language jump (JMP) to address A#.

Appendix A: Summary of ProDOS

BASIC and ProDOS continue functioning if the machine-language
program ends with a 6502 RTS instruction.

Possible Errors:

BSAVE pn ,A# ,L#\,E# [LB#]1[, Ttypel [[S#1[,D#]

Use the BSAVE command in either immediate or deferred mode.

Examples:

The BSAVE command stores the contents of a segment of the
Apple II’'s memory into a file with the name indicated by pn, S#,
and D#, and the type indicated by Ttype. The default file type is
binary (BIN). If the file does not yet exist, it is created. The segment
is specified by the starting address A#, and either the number of
bytes to be stored L# or the end address E#. B# specifies the
starting file position.

The examples shown above both store a high-resolution picture
from the second high-resolution picture area of memory. They
have the same effect, but the second example uses hexadecimal
notation and the E# option instead of the L# option.

Possible Errors:

Binary Commands ﬂ

See the sections ‘‘High-Resolution
Graphics With ProDOS’’ and “‘Installing
Machine-Language Routines” in
Chapter 9 for some important
restrictions on memory usage.

BLOAD pn [LA#]1[,B#][L#|,E#1[,Ttypel [[S#]1[,D#]

Use the BLOAD commmand in either immediate or deferred
mode.

Examples:

The BLOAD command fills a segment of memory with data taken
from the file with the name indicated by pn, S#, and D#, and with
the type indicated by Ttype. The data is taken starting at file
position B#, and is placed in memory starting at address A#.

L# is the number of bytes transferred, and E# is the end address;
one or the other, but not both, can be used. If A# is omitted, the
first byte is placed at the address from which the file was originally
saved (using BSAVE). If L# and E# are omitted, the last byte
transferred is the last byte in the file.

For the examples, assume the file PICTURE has at least two high-
resolution pictures in it, each 8192 bytes long. The first example
shown above places the first 8192 bytes of PICTURE into the first
high-resolution picture area, which starts at memory location 8192
(decimal). The second example moves the second picture, starting
at byte position $2000 (8192) in the file, into the second high-
resolution picture area, which starts at memory location $4000
(16384), and ends at memory location $5FFF (24575).

Possible Errors:

Appendix A: Summary of ProDOS

DOS, ProDOS, and
Applesoft

197 About This Appendix

197 DOS Disks and ProDOS Disks

198 Converting Files

199 The Differences Between DOS and ProDOS
200 File Organization and Names

201 DOS Commands That Went Away

201 FP and INT

201 INIT

201 MAXFILES

202 MON and NOMON
202 Improved DOS Commands
202 APPEND

202 BLOAD

202 BRUN

203 BSAVE

203 CATALOG

203 CHAIN

203 CLOSE

203 IN# and PR#

203 OPEN

204 POSITION

204 READ

204 RUN

204 WRITE

Appendix B: DOS, ProDOS, and Applesoft

204 New ProDOS Commands

205 CAT

205 CREATE

205 FLUSH

205 PREFIX

205 STORE and RESTORE
206 — (DASH)

206 FRE

206 Changes to Applesoft
206 HIMEM

206 HGR, HGR2, and TEXT
207 INPUT

207 IN# and PR#
207 TRACE and NOTRACE
207 FRE

Appendix B: DOS, ProDOS, and Applesoft m

.
.
. %@g@;’% .
. .

.
o

Appendix B

The ProDOS Technical Reference
Manual explains the many similarities
between ProDOS and Apple lll SOS
(Sophisticated Operating System).

DOS, ProDOS, and
Applesoft

About This Appendix

This appendix summarizes the differences between DOS and
ProDOS. In so doing, it responds to three particular queries:

e How do | tell what types of disks each of my programs can use?

® How do | tell which files can be converted from DOS to ProDOS
and which can be converted from ProDOS to DOS?

® | already know about DOS. What’s so different about ProDOS?

The final part of this appendix lists the effects of ProDOS upon
some of the Applesoft commands.

DOS Disks and ProDOS Disks

The first question, ““How do | tell what types of disks each of my
programs can use?”’ is a good one. It is not the program, but the
way the program is stored on a disk, that determines the types of
disk drives the program can use.

If a disk is formatted using the DOS command INIT, the programs
on that disk use DOS, and DOS can use only Disk Il Drives.

If a disk is formatted using the ProDOS Filer, the programs on that
disk use ProDOS, and ProDOS can use all disk drives made by
Apple Computer, Inc. for the Apple Il

The question becomes: ““How do | tell if a disk is DOS-formatted,
ProDOS-formatted, or other?”

DOS Disks and ProDOS Disks m

This problem only exists for Disk Il disks: a Disk Il disk could be
formatted for ProDOS, DOS 3.3, DOS 3.2.1 (or an earlier version),
Apple Il Pascal, or it could be unformatted. (If you have an

Apple lll, the disk could be SOS-formatted. In this case it is
interchangeable with ProDOS disks.)

e If it is a Disk Il disk, and the name on the label begins with a
slash, it is ProDOS-formatted.

e |[f it is a Disk Il disk, and the name on the label doesn’t begin
with a slash, follow the procedure given below.

“. If that works, it is a ProDOS-formatted disk.
If it doesn’t work, try using the DOS-ProDOS Conversion Program.
Set the direction to DOS—ProDOS and then try to transfer files. If
the program reads in a list of files, it is a DOS disk. If that doesn’t
work, the disk could be blank, copy-protected, or it could be an
old version of DOS that used yet another method of storage.

If you can’t list or catalog the files, try starting up the disk. If it
doesn’t start up, the program was probably stored on the disk
using an old version of DOS. To use this disk, you need to use the
DOS 3.3 disk labeled BASICS (which you get when you buy DOS)
and follow the instructions in The DOS Manual. If the disk still
doesn’t start up, either the disk isn’t formatted, or the information
on the disk is damaged and is not readable.

If you aren’t able to list a disk’s files, but the disk starts up, the
disk could be an Apple Il Pascal disk, some other language, or it
could be copy-protected. You probably have an instruction manual
that tells about the filenames the program can use. If it mentions
pathnames or prefixes, it is written using ProDOS; if it uses single
filenames, it could be a DOS disk.

By the Way: Once you determine a disk’s type, label the disk with its
type for future reference. Always use a soft-tipped pen when writing on
a disk’s label.

Converting Files

ProDOS programs and data can use all types of disks made by
Apple Computer, Inc. for Apple Il computers, whereas DOS
programs can use only Disk Il disks. In addition, programs written
using ProDOS read information from disks and write information
to disks considerably faster than their DOS equivalents.

Appendix B: DOS, ProDOS, and Applesoft

Table B-1. File Conversion

Using the DOS-ProDOS Conversion Program, described in the
ProDOS User’s Manual, you can convert files from DOS format to
ProDOS format, and back again. Table B-1 shows the
correspondence between DOS and ProDOS files.

Contents of File DOS Type ProDOS Type
Text T o TIXT

Binary B < BIN

Applesoft Program A < BAS

Integer BASIC Program | o INT
Relocatable Code File R < REL

Other (ProDOS only) B — XXX

When converted, text and binary files are immediately usable by
programs of the other type. Applesoft files usually have to be
modified before they can be used. The following sections explain
the changes you must make when modifying a DOS program.

The Differences Between DOS and ProDOS

There are three main areas of difference between DOS and
ProDOS. First, ProDOS is an entirely different program from DOS:
it uses different code and different parts of the Apple II’'s memory.
Any DOS program that makes use of specific locations or routines
in DOS will not work if converted. Likewise, programs that place
assembly-language routines in memory may have to be changed
so they don’t overwrite parts of memory used by ProDOS. Details
on the parts of memory used by ProDOS, and on the use of all the
ProDOS routines, are given in the ProDOS Technical Reference
Manual.

The second major difference is the conflicting filename
conventions and file organizations used by DOS and ProDOS. It is
likely that you will have to modify both when converting a program.
In addition, ProDOS does not support volume numbers. If your
program uses them, you will have to modify it to use volume names
instead.

The third difference is the command structure. Six DOS
commands no longer exist, fourteen DOS commands have been
improved, and eight ProDOS commands are new. Of these
changes, only the commands that have been eliminated will affect
the programs that you are converting.

The Differences Between DOS and ProDOS m

The PREFIX command is explained in
Chapter 3.

File Organization and Names

This section assumes that you are familiar with the organization
and names of ProDOS files. If you are not, read Chapter 2 of this
manual.

If a program refers to other files — for example, if it creates and
uses a random-access text file, or if it chains to another program
— then it is likely that you will need to change the way that the
program names these files.

First, the filenames in a converted program must all be changed to
ProDOS filenames: they can be no more than 15 characters long,
consist only of letters, digits, and periods, and must begin with a
letter.

Second, when the prefix is empty, ProDOS and DOS can use
filenames in exactly the same way: each file has a filename, and the
disk containing that file can be specified using the slot and drive
options. Thus, if a converted program uses ProDOS filenames, it
can work without further modification to the filenames, but only if
the prefix is empty. The prefix is empty immediately after you start
up ProDOS, and it also is empty after you use the command

However, it is preferable not to write or use programs that use files
in this manner. Such programs place all files into a disk’s volume
directory. Because a disk’s volume directory can hold no more
than 51 files, it soon fills up if programs don’t use directories of
their own. You should revise each program so that it, and all its
files, are stored in a separate directory.

DOS lets you assign a volume number to a disk when you initialize
it. ProDOS does not support volume numbers. To modify a
program that uses volume numbers, identify each disk by its
volume name, not number.

Appendix B: DOS, ProDOS, and Applesoft

See the ProDOS Technical Reference
Manual for more details on open files.

DOS Commands That Went Away
Six DOS commands are not supported by ProDOS. They are

FP INIT MON
INT MAXFILES NOMON
FP and INT

Because ProDOS supports only Applesoft BASIC, it has no need
for commands that switch from one version of BASIC to another. If
you use these commands, you get a = =

INIT

Because of the different types of disks that must be initialized, it
would take up too much memory space for ProDOS to have a built-
in formatting command like INIT. Thus, INIT is replaced by a
command in the ProDOS Filer. Because you can no longer format
a disk from within a program, it is now essential that you always
have an adequate supply of blank formatted disks.

Using INIT you could assign any name to the greeting programon a
disk; with ProDOS, a greeting program must be named STARTUP.
However, ProDOS lets you use a BASIC, machine-language, or
EXEC program as the STARTUP program; with DOS, only BASIC
greetings were possible.

If ProDOS encounters the INIT command in a program, it gives you
a SYHTEY EEEAR

MAXFILES

With DOS, the maximum number of files that could be open at
once was three by default; this could be raised as high as 16 by
using the MAXFILES command. With ProDOS, any program can
have up to eight files open simultaneously. A 1024-byte file buffer
is allocated to each file (or 512 bytes to a directory file) when it is
opened.

The MAXFILES command is not supported by ProDOS, but it will
not cause an error.

The maximum BASIC program size for a 64K Apple Il is

$A000 - $400 * Maximum number of open files

The Differences Between DOS and ProDOS m

Refer to the specific command
summary in Appendix A for the new
syntax.

MON and NOMON

With DOS, the commands MON and NOMON allowed you to
display all disk commands, disk input, and disk output without
printing them. These commands are not supported by ProDOS.
MON has been completely removed. If your program uses MON,
you will get a i=° . NOMON is ignored by ProDOS,
but will not cause an error.

Improved DOS Commands

Fourteen DOS commands received facelifts. All can be used in the
same manner as with DOS, so you don’t have to change them
when converting a program, but each has added features. The
following sections describe the new capabilities of these
commands.

The improved commands are

APPEND BLOAD BRUN BSAVE
CATALOG CHAIN CLOSE IN#
PR# OPEN POSITION READ
RUN WRITE

APPEND

The APPEND command has two new uses. You can now use it to
append new data to any type of file. You can use it also to append
data starting at the beginning of the record immediately following
the last logical record in a random-access text file.

BLOAD

The BLOAD command has three enhancements. You can now use
it to load the binary image of any type of file, not just binary files.
With DOS you had to load an entire binary file into memory. With
ProDOS you can load any portion of a file. In addition, you have
the option of specifying the number of bytes to be transferred as a
start address and an end address in memory, or as a start address
and the number of bytes to be transferred.

BRUN

As with BLOAD, you can load any portion of a binary file into
memory and run it. The number of bytes can be specified using a
start and an end address, or as a start address and the number of
bytes to be transferred.

Appendix B: DOS, ProDOS, and Applesoft

BSAVE

You can now transfer (using BSAVE) information stored in memory
into any type of file. The number of bytes to be saved can be
specified using a start address and an end address, or as a start
address and the number of bytes to be transferred.

CATALOG

You can now abbreviate the CATALOG command as CAT.
CATALOG shows you an 80-column display of file information, and
CAT shows you a 40-column display of information. Both show you
the contents of a single directory; thus you must specify the name
of the directory whose contents interest you. If you omit a
filename, you see the contents of the prefix directory.

In addition, CATALOG now displays information about the file’s
logical end of file, the file’s record length (random-access text
files); the file’s last load address (binary files); and the dates when
the file was created and last modified.

CHAIN

The CHAIN command now works for Applesoft programs (with
DOS it did not). In addition, one program can chain to any line of
another program, not just to the beginning of a program as before.

CLOSE
Now you must close a file from within a program. Failure to do so
can result in loss of data.

IN# and PR#

You can now use these commands to designate machine-language
routines stored in memory as the character input and output
routines. You can also use them to set the address of a slot’s

1/0 routines.

OPEN

You can now use the OPEN command to open any type of file for
access. File buffers are now allocated when the file is opened,
instead of in response to the MAXFILES command, as with DOS.

The Differences Between DOS and ProDOS m

Appendix A contains summaries of
these commands.

POSITION

The POSITION command now uses either the F# option or the
R+# option to read and discard the specified number (#) of fields
from a file. The F# option is consistent with the ProDOS definition
of fields; the R# option is for DOS compatibility.

The ProDOS versions of READ and WRITE allow you to specify the
number of fields and bytes to be read and discarded. Thus, the
POSITION command is not required by ProDOS; it is retained for
compatibility with DOS.

READ

With DOS, the READ command allowed you to use the B# option
to position forward a number of bytes before performing a read.

The ProDOS version of READ allows you to use the F# and

B# options to position forward a number of fields and bytes. This
makes the POSITION command unnecessary for READ (and also
for WRITE).

RUN
The ProDOS version of the RUN command allows you to specify
the line number at which the program is to start running.

WRITE

The ProDOS version of the WRITE command allows you to use the
F# and B# options to position forward a number of fields and
bytes.

New ProDOS Commands

In addition to the usual DOS commands, ProDOS supports eight
new commands. They are

CAT CREATE FLUSH PREFIX
STORE RESTORE — (DASH) FRE

The following sections give brief summaries of each of these new
commands.

Appendix B: DOS, ProDOS, and Applesoft

CAT

CAT displays 40 columns of directory file information, while
CATALOG displays 80 columns. Both commands display
filenames, their types, lengths, and last modified dates. CATALOG
additionally displays the date the file was created, each file’s
logical end of file, and additional storage information (record
length for random-access text files, and last load address for
binary files).

CREATE

The CREATE command allows you to create a file of any type, but
it is primarily used to create directory files. BASIC (type BAS), text
(type TXT), and binary (type BIN) files are automatically created by
the SAVE, OPEN, and BSAVE commands, respectively. Text files
can also be created by the APPEND command. Variable files
(type VAR) are created by the STORE command.

FLUSH

The FLUSH command causes all data that may be temporarily
stored in a file’s buffer to be written to the file. Using the FLUSH
command after every statement that prints data to a file ensures
that no data will be lost if the program is accidentally stopped. It
also slows down a program significantly.

PREFIX

The PREFIX command allows you to set the name of the directory
that contains the files with which you are working. With the prefix
set, all files you name are assumed to be in that directory.

If the prefix is empty, files are assumed to be in the main directory
of the disk in the last referenced slot and drive. In this case,
ProDOS filenames work exactly like DOS filenames.

STORE and RESTORE

The STORE command places the names and values of all the
variables currently defined by a BASIC program into a variable file
(type VAR). The RESTORE command adds the contents of a
variable file to the variables that are currently in memory.

The Differences Between DOS and ProDOS m

FRE command: see the section
““Changes to Applesoft.”

Using HIMEM to place machine-
language routines safely in memory:
see the ProDOS Technical Reference
Manual.

Refer to the section ‘“High-Resolution
Graphics With ProDOS” in Chapter 9.

- (DASH)

This command, consisting of a single character, is called the DASH
command. It is a generic RUN command, allowing you to run a
BASIC, binary, EXEC, or system program. It does not let you use
any of the specific options afforded by the RUN, BRUN, or EXEC
commands.

FRE

The FRE command lets you use the fast housekeeping routines
that ProDOS has.

Changes to Applesoft

In order to keep a congenial working relationship between
ProDOS and Applesoft, it is necessary for ProDOS to intercept
and perform some of the commands usually performed by
Applesoft. The following sections explain the new enhancements
or restrictions upon these ten commands:

HIMEM HGR HGR2 TEXT
INPUT IN# PR# TRACE
NOTRACE FRE

HIMEM

Each time a file is opened, ProDOS uses the HIMEM setting to
determine where it should place the file’s I/O buffer. Because
ProDOS manages memory in 256-byte chunks, you must always
make sure that HIMEM indicates a 256-byte ($100) boundary in
memory.

HGR, HGR2, and TEXT

Because the Apple II's two high-resolution pages take up a
considerable portion of the Apple II’'s memory, ProDOS normally
uses them as Applesoft program memory. If, however, you use the
HGR or HGR2 command (or both), the Applesoft program (if any)is
cleared out of the corresponding graphics page. The graphics
pages remain reserved for graphics until the TEXT command is
issued.

Appendix B: DOS, ProDOS, and Applesoft

INPUT

The Applesoft INPUT command has been made more useful. This
command always reads an entire line of text, from either the
keyboard or a file. As before, multiple variables in an INPUT
statement are assigned strings of characters that are separated by
commas in the input string. When you use ProDOS, the last
variable in the INPUT list is assigned all the remaining characters
in the line, including commas and colons. This means that you can
now use a single INPUT statement, such as

to read in any arbitrary string of characters.

IN# and PR#

If you use one of these commands from immediate mode, it is a
ProDOS command. Likewise, if you use one from within a
program, preceded by (CONTROL)-(D), it is also a ProDOS
command. If you use IN# or PR# from within a program without a
leading (CONTROL)-(D), it is an Applesoft command, and would
cause ProDOS to become disconnected if it were executed. Thus,
ProDOS intercepts these Applesoft commands and ignores them.

If you find that a PR# or IN# command from within a program is not
having the proper effect, you probably forgot the (CONTROL)-(D).

TRACE and NOTRACE

These Applesoft commands did not work with DOS. They now
have their normal effect, described in the Applesoft BASIC
Programmer’s Reference Manual, on ProDOS commands as well
as Applesoft commands.

FRE

If you use the FRE command within a program preceded by a

(coNTROL)-(D), it is a ProDOS command. It is an Applesoft
command if you use it in a program without the leading

(conTROL)-(D). In this case, housekeeping takes place using the
slow Applesoft routines.

Changes to Applesoft m

Error Messages

211 Handling Errors From Applesoft
214 Discussion of ProDOS Errors

214
214
215
215
217
217
218
218
218
218
219
220
220
220
220
221
221
221
221

RANGE ERROR (Code 2)

NO DEVICE CONNECTED (Code 3)
WRITE PROTECTED (Code 4)

END OF DATA (Code 5)

PATH NOT FOUND (Code 6 or Code 7)
1/0 ERROR (Code 8)

DISK FULL (Code 9)

FILE LOCKED (Code 10)

INVALID OPTION (Code 11)

NO BUFFERS AVAILABLE (Code 12)
FILE TYPE MISMATCH (Code 13)
PROGRAM TOO LARGE (Code 14)
NOT DIRECT COMMAND (Code 15)
SYNTAX ERROR (Code 16)
DIRECTORY FULL (Code 17)

FILE NOT OPEN (Code 18)
DUPLICATE FILENAME (Code 19)
FILE BUSY (Code 20)

FILE(S) STILL OPEN (Code 21)

Appendix C: Error Messages

 Appendix C

Table C-1. Error Message Formats

Refer to Chapter 5 of this manual and
to the Applesoft BASIC Programmer’s
Reference Manual for more details
about ONERR GOTO.

Error Messages

When ProDOS detects an error caused by one of its commands, it
normally stops the program that is running and displays a
message describing the error. These messages are in addition to
the usual messages generated by Applesoft. The source of an
error messages is indicated by the character that precedes the
message. Table C-1 illustrates these characters.

Applesoft Message ProDOS Message

If a ProDOS message occurs when you are using the Monitor, the
system is reset to BASIC before the message is displayed.

Handling Errors From Applesoft

Using Applesdft’s ONERR GOTO command, you can write
Applesoft error-handling routines to correct ProDOS and
Applesoft errors that would normally interrupt your program.

When a ProDOS or Applesoft error occurs following an ONERR
GOTO command in an Applesoft program, a code number for the
type of error is stored in decimal memory location 222. The
statement

sets the value of i to the code of the offending error. The number
of the Applesoft program line being executed at the time of the
error can be found in decimal locations 218 and 219. The
statement

sets the value of i.. to that line number.

Handling Errors From Applesoft m

Table C-2. ProDOS Error Codes

The ProDOS error messages, their codes, and the most common
cause for each are described in Table C-2. Table C-3 shows which
error messages are caused by each of the ProDOS commands.
The ProDOS error messages are discussed in greater detail later
in this appendix. The Applesoft error codes and their
corresponding messages are shown in Table C-4.

Code

ProDOS Message

Most Common Cause

Command option too small or large.
No device found in specified slot.
Write-protect tab on disk.

Read beyond end of file or record.
No file with indicated pathname.
No file with indicated pathname.
Door open, or disk not formatted.
Too many files on a disk.

Attempt to write to a locked file.
Option inappropriate for command.
Memory full, file can’t be opened.
Disk file wrong type for command.
Apple II’'s memory too small
(CHAIN).

Command must be in a program.
Bad filename, option, or comma.
Volume directory has 51 files.
Attempt to access a closed file.
RENAME, CREATE name already
used.

File already open.

Last program didn’t close file(s).

Appendix C: Error Messages

Table C-3. Errors by ProDOS Command

X

X

X

X

X|X|X]|X

X

X

X

X

X

X XXX IX]|X

XX |X]|X

XIX|X]|X

XX IX|X|X]|X

XIX|X|X]|X|X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

02]03]04/05]06{07]08]09]10{11{12{13|14]15]16{17]18[19]20]21

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

APPEND
BLOAD
BRUN

BSAVE
CAT

CATALOG
CHAIN

CLOSE

CREATE

DELETE
EXEC

FLUSH
FP
FRE
INT
IN#

LOAD
LOCK
OPEN

POSITION
PREFIX
PR#

READ

RENAME

RESTORE
RUN

SAVE

STORE

UNLOCK
WRITE

X

X{X|X|X
X | X X|{X]|X]|X
Handling Errors From Applesoft

Table C-4. Applesoft Error Codes

Refer to the Applesoft BASIC
Programmer’s Reference Manual for
more information about the Applesoft
error codes.

Code Error Message or Description

16
22
42
53
69
77
90
107
120
133
163
176
191
224 L g
254 Bad response to an INPUT statement.

255 (conTROL)-(C) interrupt attempted.

Discussion of ProDOS Errors

The following sections list the ProDOS errors, their probable
causes, and possible cures.

RANGE ERROR (Code 2)

Occurs when the value of an ProDOS command option is too large
or too small. Table A-1 shows the maximum and minimum values
for each option.

Note: The use of values outside the indicated ranges does not always
cause the message. Any ProDOS command option
that is less than 0 or greater than 65535 causes the &'k’
message, not the & - ERFEOE message.

NO DEVICE CONNECTED (Code 3)

Occurs when you specify a slot that doesn’t contain a card; a slot
that contains a card not connected to its device; or if there is no
disk in the drive (some drives only).

Appendix C: Error Messages

If you get this error when using a device for the first time, go
through the device’s installation instructions again. If you have
used the device before and you get this error:

1. You might have specified the wrong slot; try the command
again.

2. Turn off your Apple Il, open it, and gently rock the device’s card
back and forth until it is firmly seated. Close the Apple I, start
up ProDOS, and try again.

3. If the problem persists, consult your dealer.

WRITE PROTECTED (Code 4)

Occurs when ProDOS attempts to store information on a disk, and
the disk drive does not detect a write-enable notch or cutout on
the disk’s outer case. These are the most likely causes:

® There is an adhesive label placed over the disk’s write-enable
notch to prevent the writing or deletion of information on the
disk. Remove this label, and the disk is no longer protected.

® There is no write-enable notch on the disk. This is true of the
original copy of the /EXAMPLES disk, for example. If you are
sure you no longer need the original disk, you can cut a notch in
the disk’s case yourself. Use another disk’s notch as a template.

END OF DATA (Code 5)

Occurs when you try to retrieve information from a portion of a
text file where no information has ever been stored. Any byte
beyond the last field in a sequential text file, or beyond the last
field of any record of a random-access text file contains the

value 0. Zero is the ASCII code for a null character, a nothing; any
command that causes the retrieval of this character results in the
E 4+ message. The message usually occurs after an
INPUT or a GET command; it can arise in several different ways:

® Too many successive INPUTs or an INPUT with too many
variables. Each INPUT statement causes at least one additional
adjacent field to be read into the Apple Il. Each INPUT variable
causes one additional adjacent element to be read into the
Apple Il.

® Too many successive GETs. Each GET reads one additional
adjacent byte or character into the Apple Il.

Discussion of ProDOS Errors ﬁ

® The B# (Byte) option in a READ or POSITION command is too
large. In sequential files, this option must not specify a byte
beyond the last (RETURN)character in the file. In random-access
files, the B# option must not specify a byte beyond the last
character in the currently selected record. Remember,
the first byte in a file or a record is byte 0.

® The F# (Field) option in a READ or POSITION command is too
large. In sequential files, this option must not specify a field
beyond the last existing field in the file. In random-access files,
POSITION’s F# option must not specify a field beyond the last
existing field in the currently selected record.

READ and POSITION scan forward through the contents of the
file, byte by byte, looking for the F#-th (RETURN)character. If
either encounters a 0 byte (the null character) before finding the
required (RETURN)character, the LiHTH message is given
immediately: it is not necessary actually to INPUT or GET the
null character.

® The F# (Field) option in an EXEC command is too large. This
option can specify the first field beyond the last existing field in
a file, but attempting to specify the second field beyond the
file’s end causes the E -+ message. Remember,
RO specifies the first field in a file.

® The R# (Record) option in a READ command specified a
random-access file record in which nothing is yet stored. Before
you can READ from a particular record in a random-access file,
you must first WRITE some information into that record. RO is
the file’s first record, and so on.

ProDOS uses the OPEN command’s L# option for calculating
where the R#-th record begins, so the OPEN preceding READ
must use the same L# option value as the OPEN that preceded
WRITE for that file. If no L# option is specified, the L# with which
the file was originally opened is used.

Appendix C: Error Messages

PATH NOT FOUND (Code 6 or7)

Occurs when a ProDOS command specifies a valid pathname that
does not indicate an existing file, or when it specifies an invalid
pathname.

This message may arise in various ways:

You accidentally misspelled an element of the pathname.

You used a partial pathname that doesn’t apply to the current
prefix.

You used a partial pathname, and the disk indicated by the
prefix is no longer on line.

The specified file does not yet exist.

1/0 ERROR (Code 8)

Occurs after an unsuccessful attempt to store data or retrieve data
(ProDOS tries 96 times, then gives up). This message can occur in
the following ways:

Discussion of ProDOS Errors m

The selected or default drive’s door is open. Close the door of
the disk drive.

There is no disk in the disk drive indicated by S# and D#. Put a
disk into the drive and close the drive door.

The disk in the selected or default disk drive is not formatted.
Use the ProDOS Filer to format the disk.

The disk is incorrectly seated in the disk drive. Open the drive
door, pull the disk out, put it back in, close the door, and try
again.

The ProDOS command’s D# (Drive) option specified a non-
existent disk drive. The default drive is now the non-existent
drive. Just specify the correct D# option with the next ProDOS
command to reset the default.

The system is trying to access a 13-sector disk. Use the
DOS 3.3 program MUFFIN to update your disk to 16 sectors.

A ProDOS command’s S# (Slot) option specified a slot that
does not contain a disk controller card, or the shum option of
PR# or IN# specified a slot that contains no card.

Refer to Appendix A to see what

options go with which commands.

The default value of S# now indicates a slot that doesn’t exist.
First, you must get a prompt back, then you must reset S#. To

reset the slot correctly:

1. Press (CONTROL)-(RESET).

2. If you see a Monitor prompt (*), press (CONTROL)-(C)(RETURN).

[1#. This time use a valid slot number.

3. Type L.

DISK FULL (Code 9)

Occurs when ProDOS attempts to store information on a disk and
finds that no more storage space is available on that disk. The
number of free blocks on a disk is indicated when you display the
catalog of the disk’s volume directory. If you receive the [} 1k
. message, rest assured that all files are closed, and
that ProDOS saved for you all it could (leaving you with some
portion of your file not on the disk). If you receive this message
while saving a file called STUFF, the first thing you should do is

and then save your program on another disk that has unused
room.

FILE LOCKED (Code 10)

Occurs when you try to APPEND, BSAVE, DELETE, RENAME,
SAVE, STORE, or WRITE a locked file. Check the CATALOG
display: the names of locked files are preceded by an asterisk (*).
Files are locked to prevent their being accidentally overwritten.
Use another disk or unlock the desired file.

INVALID OPTION (Code 11)

Occurs when you use an option that is either non-existent or that
is inappropriate for the given command.

NO BUFFERS AVAILABLE (Code 12)

When a file is opened by the APPEND, CAT, CATALOG, EXEC,
OPEN, or - (DASH) command, a 1K buffer in memory is assigned
for the temporary storage of data and file information. There can
be a maximum of eight files open at a time. This error can occur if
one of these commands is used when eight files are already open,
or if there is not enough free memory for a buffer to be assigned.

Appendix C: Error Messages

The CATALOG, EXEC, and - commands allocate buffers, use
them, and then release them; the OPEN command creates a buffer
that exists until it is released by a CLOSE command. Files are not
automatically closed when a program comes to an end.

If you get this error, you cannot use any of these commands until
you close one of the open files.

This error also occurs if you try to BLOAD a file into the portion of
memory used by the system (above HIMEM or below LOMEM).

FILE TYPE MISMATCH (Code 13)

Occurs when a ProDOS command expects to use one type of file,
and the specified file is of another type. This message arises from
several different incorrect combinations of ProDOS commands
with existing file types. Here are the correct combinations:

Command File Type

CATALOG pn, PREFIX pn pn must be a directory file (DIR).

LOAD pn, RUN pn, SAVE pn, p_n must be an Applesoft program

CHAIN pn file (BAS).

RESTORE pn, STORE pn pn must be an Applesoft variable
' file (VAR).

EXEC pn pn must be a text file (TXT).

OPEN pn, APPEND pn pn must be a text file (TXT) unless

Ttype is used, then file type must
match Ttype.
BRUN pn pn must be a binary file (BIN).

BLOAD pn, BSAVE pn pn must be a binary file (BIN)
' unless Ttype is used, then file type

must match Ttype.
pn must be type BAS, BIN, TXT,

-pn
B or SYS.

The file named STARTUP in the volume directory of a startup disk
must be of type BAS, BIN, TXT.

Discussion of ProDOS Errors

PROGRAM TOO LARGE (Code 14)

Occurs when a ProDOS command attempts to place a disk file into
the Apple II’'s memory, and finds the available memory insufficient
to contain the entire file. This error can be caused by the CHAIN,
LOAD, RESTORE, RUN, or - commands. You (or a previous
program) may have set HIMEM too low for the new program to fit.

If you get this error, you can split the program into smaller portions
and use the CHAIN command to transfer between one portion of
the program and the other.

Remember that a program requires an additional 1K of memory
for each file that is simultaneously open.

NOT DIRECT COMMAND (Code 15)

Occurs when you try to use one of the text file commands
APPEND, OPEN, POSITION, READ, or WRITE from immediate-
execution mode. These ProDOS commands can be used only from
within PRINT statements in program lines.

SYNTAX ERROR (Code 16)

Occurs when ProDOS encounters a syntax error in a ProDOS
command. Check the manual or the help screens for the exact
syntax required for the command in question. The problem may
be a pathname with illegal characters in it, an incorrect option
symbol, a missing option, or a missing or incorrect separator
(usually a comma). This message also arises if an option value or
command quantity is a negative number or is greater than 65535.

If all ProDOS commands inexplicably cause the
message, ProDOS is not started up or is “dlsconnected” from
input and output. To restore, type ¥ from BASIC (from
the Monltor press (CONTROL)-(C)to enter BASIC, then type

). If this doesn’t work, start up the disk again.

DIRECTORY FULL (Code 17)

A ProDOS volume directory file can hold up to 51 files. If a BSAVE,
CREATE, OPEN, SAVE, or STORE command indicates a file in a
volume directory that already contains 51 files, you get this error.
To correct the error, save the file into another directory or onto
another disk, then use the Copy File utility to move some files from
the volume directory into another directory.

Appendix C: Error Messages

FILE NOT OPEN (Code 18)

Occurs when a command is issued that can only act upon an open
file. This error can be caused by the POSITION, READ, and WRITE
commands. You must open a file before using any of these
commands.

DUPLICATE FILENAME (Code 19)

Occurs when you CREATE or RENAME a file using a pathname
that already exists.

FILE BUSY (Code 20)

Occurs when you CAT, CATALOG, DELETE, or RENAME a file that
is already open. You must close a file before using one of these
commands on that file.

FILE(S) STILL OPEN (Code 21)

Occurs when program execution is interrupted while one or more

files are still open (for example, by another error or (CONTROL)-(C)).
You must close all open files before you issue another LOAD or
RUN statement.

Discussion of ProDOS Errors

Appendix D

Extras

225 About This Appendix
225 Using the System Date and Time

226

Using TIME

226 Reading From ProDOS Directories
227 The Applesoft Programmer’s Assistant (APA)

228
229
230
230
233
233
236
236
236
237
237
238
238

Starting APA

Automatic Line Numbering

Turning Off Automatic Line Numbering
Renumbering a Program

Putting a Program On Hold

Merging Two Programs Into One
Deleting Remarks From a Program
Displaying Control Characters
Suppressing Control Characters
Calculating a Program’s Length
Producing a Cross-Reference Listing
Converting Decimal to Hex and Hex to Decimal
Clearing the APA Program From Memory

Appendix D: Extras

- fg\g/ L
.
.

.
.
%/g
.

.

"}é
.

.
o
gl

.

.
o
o

.

o

.

.

.

.

.
.

|
.

‘
.
.
.
.

. . ey

T . o .
.. . . .
.

; .
. . /
. .
.
. gf%ﬁ@
a0 .
.

.
. . %ﬁ% . f%g% ‘
. . .
.
. -
. . .
.

. . .
. . .
. . . .
. s
. . . .
.
- .
o
.
.
.

, .
. W\\@Z’Q
A .
. -
o -
.
o

/

' -
. ' / . . .
. -
. -
o .
. .
..
. - .
- -
S 7 - . . -
a0
. .
0 . .
0 . .
. . . .
. .
. %Zf% .

. .
.

.

. .
. . .

. . . /
@gﬁ?

.
.
.

.

-

.

i

.
- e -
..
..
.

.

.
.

o
_

.

. .
.
.

o
a

L

. .

. o
L
. .

.

.

.

L

.
.

.
.
.

. .
.
.
.
.
. - .
.
.
.
. .

.
-

.
.
.

-

Appendix D

Extras

About This Appendix

This appendix describes the useful programs that are stored in the
directory /EXAMPLES/EXTRAS. They perform the following
functions:

e TIME allows you to read and set the system date and time so
that your files are marked with the proper date.

o READ.DIRECTORY is an example of how to read from a
directory file.

Using the System Date and Time

ProDOS has two memory locations that contain the current date
and time. If you have a clock/calendar card, instructions for
making it work with ProDOS are in the section ““Using a
Clock/Calendar Card” in Chapter 9.

If you don’t have a clock/calendar card, ProDOS takes whatever
date and time are stored in the system date and time locations,
and marks all created and modified files with that time. The
program TIME is an Applesoft program that allows you to read and
set the system date and time locations so that your files are
marked with the current date and time.

Using the System Date and Time ﬁ

To set the time on a clock/calendar
card, refer to the manual for the card.

D$ is (CONTROL)-(D).
Open directory.
Prepare to read
directory name,
title line,
blank line,
lines of directory,
until a blank is read.
Print block use and close directory.

Using TIME
With the /EXAMPLES disk in any drive, type the command

and the values of the date and time locations in memory are
dlsplayed If there is no tlme currently set, the messages

wand <R + are displayed. The program asks
you if you want to update the system date and time. If you say yes,
you must enter the date in the form

(where DD = 01 to 31, MMM = JAN to DEC, YY = 00 to 99)

and the time in the form

(where HH = 01 to 12, MM = 00 to 59, AM = AM or PM)

When entering days, hours, or minutes less than 10, you must type
in the leading 0.

If you have a clock/calendar card, this program does not set the
time on the card.

Reading From ProDOS Directories

Like all other ProDOS files, directory files can be opened and read.
When you read from a directory file, ProDOS automatically
interprets the information in that file, and passes it to you in an
understandable and familiar form—it gives you the same lines of
text displayed by the CATALOG command. For example, to list the
/EXAMPLES directory, you can use

Appendix D: Extras

The first line returned is the name of the directory being read. If it
is a volume directory, it is preceded by a slash. The next line read
is the title line, shown below. The third line is always empty.
Subsequent lines, until the next blank line, are the files in the
directory. The block count is the last line read. This program is
stored in the file /EXAMPLES/EXTRAS/READ.DIRECTORY.

If you want to do interesting things with the string you have just
read (such as write a program that lets you look through a disk’s
directories), you need to know the exact format of the returned
string. A sample line from a directory looks like this

Table D-1. Directory Line Composition

The specific contents of each character of a line read from a
directory are listed in Table D-1.

Column Use

1 Locked or unlocked

2-16 Filename

18-20 File type

23-28 Blocks used by file

31-39 Date file was last modified

41-45 Time of last modification (24 hour clock)

48-56 Date file was created

58-62 Time file was created (24 hour clock)

64-71 Logical end of file

73 Subtype identifier: A = load Address
R = Record length

75-79 Load address (hexadecimal)

76-79 Record length (decimal)

The Applesoft Programmer’s Assistant (APA)

The Applesoft Programmer’s Assistant is a binary program named
APA. It is in the EXTRAS subdirectory on the ProDOS BASIC
Programming Examples disk.

APA can save a lot of time when you write or change Applesoft
programs. The table below lists APA’s functions and the
commands you use to perform them. Each command is discussed
on the pages that follow.

The Applesoft Programmer’s Assistant (APA) 1297

Function Command

Automatic Line Numbering AUTO
Turning Off Automatic Line Numbering MANUAL
Renumbering a Program RENUMBER
Putting a Program On Hold HOLD
Merging Two Programs Into One MERGE
Deleting Remarks From a Program COMPRESS
Displaying Control Characters SHOW
Suppressing Control Characters NOSHOW
Calculating a Program’s Length LENGTH
Producing a Cross-Reference Listing XREF
Converting Decimal to Hex and Hex to Decimal CONVERT
Clearing the APA Program From Memory EXIT
Starting APA

Here is how to start up the APA program:

1. Insert the ProDOS BASIC Programming Examples disk in
drive 1, and close the drive door.

2. If the computer’s power is not yet on, turn it on and go to Step 3.
OR

If the computer’s power is already on, press
(S)(CONTROL)-(RESET).

3. When the disk drive’s light goes out and the ProDOS BASIC
Programming Examples startup display appears, type

and press (RETURN).

The drive whirs for a moment, while ProDOS relocates, loads, and
initializes APA.

By the Way: APA is loaded just below HIMEM, and HIMEM is reset to
just below APA. Although they are both in memory at the same time,
APA and any Applesoft program you load are kept separate and can’t
interfere with each other. If your program is extremely large, you may
need some of the memory taken up by the APA, but this will rarely be a
problem.

Appendix D: Extras

After APA is loaded, the APA startup display appears:

The space after #1741 is optional. The
starting line number and increment
must be numeric integers in the range
from 1 to 63999.

With the Applesoft i prompt on the screen, you can use any of
APA’s commands. APA’s commands can be used only in
immediate mode—they cannot be part of another program.

Automatic Line Numbering

The AUTO command makes it easier and faster to enter programs.
It lets you specify

e what line number to begin with

e the increment between line numbers.

To specify a starting line number of 100 and an increment of 10,
type

and press (RETURN). When you then press (SPACE), the line

number appears automatically.

After you type the rest of the Applesoft program line and press
(RETURN) and (SPACE), the next line number, appears.

To specify a starting line number of 100, without specifying an
increment, simply type

and press (RETURN). The APA sets the increment to 10.

If you wish to leave a line number unused, press and
then without typing an Applesoft program line—the next
line number appears, and no statement is entered under the
previous one.

If you want to use a line number that the AUTO function doesn’t
provide (for example, to use the line number 15 when the starting
line number is 10 and the increment is 10), just type

pressing (SPACE).

The Applesoft Programmer’s Assistant (APA) ﬁ

If you change your mind about a statement while you are typing it,

press (CONTROL)-(X). When you then press (SPACE), the same

number reappears without the statement.

A line number appears only if you press after the i
prompt, so you can type a run-time command any time you see the
prompt, as long as you don’t begin it with a space. This means you
can RUN or LIST your program, or SAVE it and LOAD another,
clear the screen with HOME, or see the CATalog—ijust as if APA
weren’t there.

Warning

It is possible to overwrite APA with run-time commands. When APA is
loaded, don’t run a program that changes HIMEM or the I/0 hooks. And

don’t press (RESET).

Turning Off Automatic Line Numbering

To turn off automatic line numbering, type

and press (RETURN). MANUAL is the default when you load APA. To
get automatic line numbering, you must use the AUTO command.

Renumbering a Program

The RENUMBER command renumbers the lines in all or part of a
program in memory. You specify the starting line number and
increment.

Even better, this command also changes line references in GOTO,
GOSUB, and ONERR statements! So if the program runs correctly
before renumbering, it runs correctly after renumbering—unless
you change the order of the lines. RENUMBER does not, however,
change line references in REM statements, so check these
yourself.

Appendix D: Extras

Let’s start with an example. First, type i to clear memory (this
won'’t affect the APA program). Then enter this simple program at
the keyboard:

- and press (RETURN).

SAVE the program by typing :

To renumber your SAMPLE program, type

and press (RETURN). Your whole program is renumbered, starting
with line number 100 and incrementing by 10. Try LISTing it:

i g0

If you don’t want to start with line number 100 and increment
by 10, type, say:

This results in

The Applesoft Programmer’s Assistant (APA) ﬂ

Load the SAMPLE program you saved earlier. To renumber only
part of this program, you can specify the first and last old line
numbers to be changed. For example, if you type

(where the starting line number is 100, the increment is 10, and the
first and last old line numbers are 30 and 40), the result is

Only the lines previously numbered 30 and 40 have been
renumbered. Notice that the lines are in a new sequence, in
keeping with their new line numbers. You can use RENUMBER to
move subroutines around in a program.

You can specify the first one, the first two, the first three, or all four
RENUMBER parameters. RENUMBER uses a default value for
omitted parameters. The default values are:

< starting line number> 100

<increment> 10
<first line> 0
<last line> 63999

Thus, these two lines are equivalent:

The RENUMBER command does not let you give two lines the
same number or interleave two sets of lines. Instead, you see the
message i i i For
example, if you load SAMPLE and type

you see the error message: this command would not only put
line 50 between lines 10 and 20, but it would also put lines 40
and 60 on top of lines 10 and 20.

Appendix D: Extras

Putting a Program On Hold

Use the HOLD command to shelter a program above HIMEM,
where it can’t be erased by the loading of another program. This
lets you load a second program into memory, then use the MERGE
command (described in the next section) to combine the two
programs.

With a program in memory, type

and press (RETURN). You see the message ¥

Merging Two Programs Into One
After putting one program on hold, you can use the MERGE
command to combine it with another.

Let’s work with the SAMPLE program you created earlier. First,
load SAMPLE and list it on the screen:

Now delete lines 10, 30, and 50 by typing

and pressing (RETURN) after each line number.

When you list the program, you have

The Applesoft Programmer’s Assistant (APA) W

Save this shorter program under the name APE. Now type

to put APE on hold.

Now reload SAMPLE, and delete lines 20, 40, and 60 from it. This
lists as

Save this program under the name SML. Now type

and press (RETURN); then type

and press (RETURN). The result:

Presto! The program you carved up so diligently is now whole
again, and sorted by line number.

If you had renumbered SML before merging, for example, by
typing

so that SML looked like this

Appendix D: Extras

you would have gotten a different result. If you typed

you’d get

The MERGE command, unlike the RENUMBER command, can
create duplicate line numbers. For example, put APE on HOLD,
then LOAD SML. Renumber it by typing

and the listing is:

Both APE and SML now contain lines numbered 20 and 40. Now
type

and you see the message

If you press to continue in spite of the duplicate line numbers,
the line from the HOLD area has priority, and the other line with the
same number is deleted. The listing is then:

The Applesoft Programmer’s Assistant (APA) m

Control characters are characters

produced when you press (CONTROL

together with some other key.

If you try to use MERGE when there is no program on hold, you get
the message |

The MERGE command can perform wonders, and save you a lot of
time. But it can also wreak havoc. Before typing the MERGE
command, SAVE each of the programs to be merged.

Deleting Remarks From a Program

The COMPRESS command removes documentation remarks
(program lines that begin with REM) from the program in memory.
COMPRESS lets you maintain two versions of a program. The one
that contains REM lines is easier to maintain, and the compressed
version runs faster and uses less memory.

To use this feature, load a documented program, then type

and press (RETURN). The program in memory is compressed, and
you can then save it under a different name. A message tells you
how many bytes are saved. If you later revise the program, change
the documented version and make a new compressed version
from it.

Displaying Control Characters

Use the SHOW command to make the control characters in your
program visible. Type

and press (RETURN). If the program contains any control
characters, they are displayed in inverse video when you LIST.

Suppressing Control Characters

After using SHOW to make control characters visible, use the
NOSHOW command to make them invisible again. Type

and press (RETURN). Control characters are no longer displayed.

Appendix D: Extras

Calculating a Program’s Length

Use APA’s LENGTH command to determine the length of the
program in memory. Type

and press (RETURN). The program’s length in bytes is displayed, in
both decimal and hexadecimal form.

Producing a Cross-Reference Listing

The XREF command produces an alphabetical cross-reference
listing of the Applesoft program in miemory. The listing shows each
variable in the program, together with the numbers of all lines in
which the variable appears.

Load the program you wish to cross-reference; then type

and press (RETURN). After a pause that depends on the length of
the program, the variables and their line numbers are listed on the
screen. Note that all variable names are shortened to two
characters (Applesoft distinguishes only the first two characters of
a variable name).

Five kinds of variables are identified by a suffix:

represents a string
represents an array
represents a string array
represents an integer variable
represents an integer array

Fr A 1Y

You can interrupt the cross-reference listing by pressing
CONTROL)-(S). To resume an interrupted listing, press
CONTROL)-(S) again.

The Applesoft Programmer’s Assistant (APA) ﬁ

Converting Decimal to Hex and Hex to Decimal

Use the CONVERT command to convert decimal numbers to
hexadecimal and hexadecimal numbers to decimal.

For example, to convert decimal 255 to hexadecimal, type

and press (RETURN). The program immediately responds by
displaying

where - is the hex equivalent of decimal 255.

To convert hexadecimal 2B to decimal, type

and press (RETURN). The program responds with

where

is the decimal equivalent of hex 2B.

Clearing the APA Program From Memory

To unlink APA commands and return to the system all the memory
that was being used by APA, type

and press (RETURN). Once you’'ve used the EXIT command, typing
any more APA commands resultsina“

To reload APA, type

and press (RETURN).

Appendix D: Extras

. - = -

Glossary

This glossary defines the terms used in this manual as they apply
to ProDOS. Refer to other sources for more complete definitions.

address A number that specifies a single byte of memory.
Addresses can be given as decimal integers or as hexadecimal
integers. A 64K system has addresses ranging from 0 to 65535 (in
decimal) or from $0000 to $FFFF (in hexadecimal).

APPEND Attach to the end of. The APPEND command is used to
write new data to the end of an existing file.

ASCIl An acronym for the American Standard Code for
Information Interchange. This code assigns a unique value from

0 to 127 to each of 128 numbers, letters, special characters, and
control characters. It is the code with which the Apple Il represents
the characters entered at the keyboard.

back up To make a spare copy of. It is a good habit to back up
important files and disks frequently.

binary Encoded using the base-two numbering system
consisting of the two digits, 0 and 1. A single binary digit, a 0 or
a 1, is called a bit.

binary file A file whose data are to be interpreted in binary form.
Machine-language programs and pictures are stored in binary
files. In comparison, the data in a text file are interpreted as a set
of characters. A ProDOS binary file is indicated in a catalog by the
abbreviation BIN.

BLOAD Binary load. The BLOAD command causes the binary
form of a file to be placed in memory. If the file is not a binary file,
its uninterpreted image is placed in memory.

block 512 bytes of data. This is the unit of storage used by
ProDOS. ProDOS regards the information stored on disk and in
memory as collections of blocks.

BLOCKS When you use the CAT or CATALOG command, the
column on the screen labeled lists the number of blocks
of disk space occupied by each file in that directory.

Glossary

BRUN Binary run. The BRUN command causes a binary program
to be brought into memory and run.

BSAVE Binary save. The BSAVE command causes the binary
data in a portion of memory to be saved in a disk file. If the file is
not a binary file, the data is not automatically encoded before
being placed in that file.

buffer A temporary storage area. ProDOS uses a file buffer as a
temporary resting place for the characters being read from or
written to the file.

byte A unit of computer memory. A byte is eight bits (Binary
diglITS) long, and is thus capable of expressing a range of numbers
from O to 255 (2 to the 8th power is 256). Each character in the
ASCII code is represented within a single byte.

CAT or CATALOG These commands cause a list of the names
and characteristics of all the files in a directory to be displayed.
Both are identical. This display of information is often referred to
as a catalog. CAT displays a 40-column list; CATALOG, 80.

CHAIN The CHAIN command runs a BASIC program without first
erasing the variables currently in memory.

CHR$ This Applesoft function, when given an ASCII code,
returns the character represented by that code. CHR$(4) returns a

(CoNTROL)-(D)-

CLOSE This command must be issued when you finish using a
file. It writes all unwritten data to the file, and it releases the file
buffers allocated to that file.

CREATE This command creates a new file. When used, it places
a new file of a designated type into a designated directory.

(coNTROL)-(D) This character must precede every ProDOS
command used in a program. (CONTROL)-(D) has the ASCII code 4,
thus it can be generated using the Applesoft function call,
CHR$(4).

(conTROL)-(RESET) This combination of keystrokes usually causes
an Applesoft program or command to stop immediately. If a
program disables the (CONTROL)-(RESET) feature, you need to turn
the Apple Il off to get the program to stop.

DASH (-) This command runs a BASIC, machine-language,
EXEC, or system program.

DELETE This command removes a file from its directory. A
deleted file cannot be recovered.

Glossary

directory file (type DIR) A file that contains the names and
locations on the disk of other files. Related files should be grouped
together into a single directory file. See also volume directory.

disk A flat circular piece of plastic or metal, dipped into glue and
coated with a fine metallic powder, onto which information is
magnetically recorded.

disk drive A device that can read information from and record
information on a disk. ProDOS lets the Apple I communicate with
all disk drives manufactured by Apple Computer, Inc. for the
Apple Il

element As defined in this manual, a string of characters,
terminated by a comma or a carriage return, that can be read
using the BASIC INPUT statement. For example, INPUT A$,B$
reads two elements.

ENDFILE End of file. When you display a disk’s catalog, the
column of information labeled i tells the number of bytes
that each file would occupy if all the disk space allocated to that
file were filled. Refer to Chapter 3 for more details.

/EXAMPLES The volume name of the disk that contains the
ProDOS program and the examples for this manual. This disk
contains the version of the system file that must be on every
ProDOS startup disk.

EXEC This command causes input to be taken from a sequential
text file rather than from the keyboard. When you use EXEC, you

control the operation of the Apple Il by using commands that are
stored in a text file.

field In afile, a string of characters preceded by a carriage return
character, and terminated by a carriage return character. A field is
written to a file by each PRINT statement not terminated by a
semicolon. The INPUT command reads an entire field from a file.

file A fileis a named, ordered collection of information on a disk.
When you use ProDOS to place information on a disk, you give the
file a name and a type. The file’s type determines how informatiqn
is encoded in that file.

filename The name that identifies a file. A ProDOS filename has
a maximum of 15 characters. It can contain letters, digits, and
periods, but it must begin with a letter.

FLUSH Send unwritten data to its file. Use this command to
ensure that the data in a file is identical to the data written to the
file. FLUSH is like CLOSE, except the file remains open.

Glossary

format To prepare the magnetic surface of a disk for the storage
of information. The ProDOS Filer lets you format all types of disks.
This utility replaces the DOS command INIT, which was used to
format Disk Il disks.

FRE This command is used to access the ProDOS fast
housekeeping routines.

HELPSCREENS A file, stored on the /EXAMPLES disk, that
contains all the help screens. Each screen is stored in a single
512-byte record of a randcm-access text file. For the HELP
command to be usable, this file must be on the disk from which
ProDOS was started up, and the command - & must have
been previously issued.

hexadecimal Encoded using the base-16 numbering system.
Hexadecimal numbers are formed using the ten digits 0 through 9
and the six capital letters A through F. All hexadecimal nhumbers
used with ProDOS must be preceded by the symbol $.

IN# This command designates the source of subsequent input
characters. It can be used to designate a device in a slot or a
machine-language routine as the source of input.

input routine A machine-language routine that performs the
reading of characters. The standard input routine reads
characters from the keyboard. A different input routine might, for
example, read them from an external terminal.

language card An Apple Il interface card that, when placed in
slot 0 of a 48K Apple Il, gives the Apple Il access to a total of

64K of memory. If you have an Apple Il or Apple Il Plus, you need a
language card, or the equivalent, to use ProDOS.

LOAD This command brings a BASIC program into memory from
a file. It clears the current BASIC program and variables from
memory and brings in the new program.

load address The first address in memory from which data was
BSAVEd into a file. When that file is BLOADed or BRUN, it is
placed in memory starting at the load address unless you specify
otherwise. The load address of a binary file is listed in the column
labeled = when you display a catalog of files.

LOCK This command protects a file from being accidentally
renamed, deleted, or altered.

machine-language interface (MLI) The set of machine-
language routines, stored in the file named PRODOS, with which
ProDOS talks to disk drives. The ProDOS Technical Reference
Manual contains a full explanation of the ProDOS machine-
language interface.

Glossary

NAME When a catalog of files is displayed on the screen, the
column contains the names of the files in the listed
dlrectory

OPEN This command allocates space in memory for a file’s
buffers, and it sets the file position pointer to the beginning of the
file. The next file-related command to be issued must be a READ
or a WRITE. All files opened must be closed.

option An item in the syntax of a ProDOS command that
determines a single aspect of the command’s action, such as a
pathname or a file type. Unbracketed options must be included
each time the command is used, bracketed options can be
specified as needed, and two options separated by a vertical line
are alternates.

output routine A machine-language routine that performs the
sending of characters. The standard output routine writes
characters to the screen. A different output routine might, for
example, send them to a printer.

partial pathname A portion of a pathname. A partial pathname
does not begin with a slash, and it does not have to (but may)
begin with the name of a volume directory. When you use a partial
pathname in a command, the prefix is usually attached to the front
to form a full pathname. A partial pathname can be no more than
64 characters long.

pathname A series of filenames, preceded and separated by
slashes, that indicates the entire path, from volume directory to
file, that ProDOS must follow to find that file. A pathname used in a
command can contain no more than 64 characters, slashes
included. (The pathname formed by the prefix and a partial
pathname can be up to 128 characters long.)

POSITION This command causes a specified number of fields to
be read and discarded from an open file. It is used to move the
position of the file pointer forward in the file.

PR#t This command sends output to a slot or to a machine-
language program. It specifies an output routine in the ROM on a
peripheral card or in a machine-language routine in RAM by
changing the address of the standard output routine used by the
Apple Il.

prefix A pathname set to indicate a specific directory file. When
you use a partial pathname, the prefix is added to the front of it.
You set the value of the prefix using the PREFIX command. A
prefix can be no more than 64 characters long, including slashes.

Glossary

ProDOS command Any one of the 28 commands recognized by
ProDOS. Each has its own syntax, all can be used within
programs, and all but five (text file commands) can be used from
immediate mode. ProDOS commands used from within programs
must be issued as part of a PRINTed string, and must be preceded

by (CONTROL)-(D).

/RAM The volume name of a small volume automatically placed
by ProDOS in the alternate 64K of an Apple lle with an Extended
80-Column Text Card. It can be used just like a disk volume;
however, the information stored on it disappears when the
computer is turned off.

Random Access Memory (RAM) This is the readable and
writable memory of the Apple Il. Its contents are usually filled with
programs from a disk, and they are lost when the Apple Il is turned
off. An Apple Il must have 64K of RAM to use ProDOS.

random-access text file A text file that is partitioned into an
unlimited number of uniform-length compartments called records.
When you open a random-access text file for the first time you
must specify its record length. No record is placed in the file until
written to. Each record can be individually read from or written to,
hence the name, random-access.

READ This command, when used after the OPEN command,
prepares a file to be read. It can also select the position in the file
(record, field, and byte) of the next piece of information to be read.
Until the next ProDOS command is issued, subsequent INPUT
statements are satisfied by data from the file.

Read Only Memory (ROM) In the context of this manual, ROM
refers to semiconductor chips in the Apple Il or on peripheral
cards that contain programs essential to the system’s operation.
The contents of ROM are permanent and unalterable. The Apple Il
comes with ROM chips that contain the system Monitor and a
version of BASIC, and the ROM on a disk controller card contains
programs that let the Apple Il communicate with one or two disk
drives.

record A unit of storage in a random-access text file. Every
random-access text file can contain a very large number of
records; each record holds the exact same number of characters.
A program specifies a file’s record length (in bytes) when the file is
first opened; it must subsequently read and write data into specific
records within the file.

record length The length of a random-access text file’s records
in bytes. The maximum record length is 65535 bytes; the minimum
is 1.

Glossary

RENAME This command allows you to change the name of a file.
You cannot use this command to move the file from one directory
to another, only to change its name within a directory. A file must
be unlocked to be renamed.

RESTORE This command clears the BASIC variables currently in
memory, and it reads in a new set of variables from a variable file
(type VAR). See also STORE.

RUN This command clears the current BASIC program and
variables from memory, brings a BASIC program into memory
from a file, and runs it. An option lets you specify the first program
line to be run.

SAVE This command lets you save the BASIC program currently
in memory as a BASIC program file (type BAS).

sequential-access text file A text file made up of a sequence of
fields. A field is a string of characters terminated by a carriage
return character. Sequential text files are best used for types of
data that will be stored and retrieved sequentially.

start up To get the system running. In the context of ProDOS,
starting up is the process of reading the ProDOS program (in the
files PRODOS and BASIC.SYSTEM) from the disk, and running it.

startup disk A disk that contains all the information needed to
get the computer running. A ProDOS startup disk must be
formatted using the ProDOS Filer, and it must contain the files
PRODOS and BASIC.SYSTEM.

STORE This command causes the BASIC variables currently in
memory to be arranged in a compact form and then placed in a
BASIC variable file (type VAR). The variables so stored can be
returned to memory using the RESTORE command.

SUBTYPE In a catalog, the column labeled : contains
two types of information: for a random-access text file, the file’s
record length (R) in decimal; and for a binary file, the file’s load
address (L) in hexadecimal.

syntax A representation of a command that specifies all the
possible forms the command can take. The syntax of each
ProDOS command is given as a command word followed by a list
of options.

SYSTEM A file with a name of the form XXX.SYSTEM must be in
the volume directory of every startup disk; it contains the system
program that is run when the disk is started up. On the
/EXAMPLES disk, BASIC.SYSTEM contains the ProDOS BASIC
program; on the disk named /USERS.DISK, FILER.SYSTEM
contains the ProDOS Filer.

Glossary

text file (type TXT) A file whose contents are interpreted as
characters encoded using the ASCII format. ProDOS defines two
types of text files: sequential, a grouping of sequentially accessible
fields of text; and random-access, a collection of equal-sized, and
independently accessible, groups of characters.

TYPE In a catalog, the column with this heading names the type
of each file listed. Types are given as three-letter abbreviations.
There is a list of file type abbreviations in Table A-2.

UNLOCK This command reverses the effect of the LOCK
command. A file must be unlocked if it is to be renamed, deleted,
or altered.

/USERS.DISK The /USERS.DISK disk contains utilities
programs with which you can format disks, perform all file
maintenance (create, rename, delete, copy), and convert files
between DOS 3.3 format and ProDOS format. These programs are
explained in the ProDOS User’'s Manual.

volume A source or destination of information. As used in this
manual, volume always refers to a disk. It could also, for example,
refer to a magnetic tape or a location in a network.

volume directory The main directory of a volume. On a disk, the
volume directory is a file that contains the names and locations on
that disk of up to 51 other files, any of which may themselves be
directory files.

WRITE This command, when used after the OPEN command,
prepares a file to be written to. Until the next ProDOS command is
issued, all subsequent PRINT statements send characters to this
file.

write-protected A disk drive that uses flexible disks can only
write on a disk that has a small notch in the proper location. If this
notch is covered, or if the notch does not exist, the disk is write-
protected. The notch itself is referred to as a write-enable notch.

Glossary

; - L L
mwm»u\,mwmmw»

,,w,.,,,,wm.m.,ww,w,m,,,,Wh,,,uwk.w,.m ket

e L .\\f L
. «W«\\:

i |
R ‘ | .
‘ H‘Uﬁm, wmmmm s

‘ | L «mmwm\mm.»@\y»
a S

Index

A

ADDRESS program 120, 129
APA 227-238
APPEND 86, 110, 128, 187, 202
APPEND.TEXT 111
Apple lll SOS compatibility 167
Applesoft
BASIC 49, 52, 61
error codes 214
errors 211
NOTRACE command 68
PRINT FRE command 82
Programmer’s Assistant
227-238
TRACE command 68
APPLESOFT STARTUP 67
array 237
assembly-language
programs 162
asterisks 45, 174
AUTO 229-230
automatic line numbering
229-230
AWAY 138

B

backing up disks 3
BASIC
program
commands -178-180
files 49
to create EXEC file 138
programming commands
180-184
reentering 161
BASIC.SYSTEM 65, 162
BASICS disk 198
binary
commands 148, 190
flenames 150
files 147

Index

BLOAD 145, 148, 152, 192, 202
with non-binary files 153

block 35

boot disk 66

bracketed options 21

BRUN 145, 150, 190, 202

BSAVE 146, 148, 155, 191, 203

bytes 148

C

CAPTURE 140
carriage return character 92
CAT 29, 173, 205
CATALOG 28, 29, 173, 203

commands 29

help screen 9
catalog of /EXAMPLES 33
CHAIN 61,73, 180, 203

1/0 from BASIC programs 73
changes to Applesoft 206
CHR$, CONTROL-D 67
clock/calendar card 161, 225
CLOSE 86, 107, 125, 185, 203
combining BASIC

programs 135

subroutines 135
COMPRESS 236
CONJUGATE 97
CONJUGEAT 98
CONJUGEATEN 98
control characters

displaying 236

suppressing 236
CONTROL-C 142, 161, 190
CONTROL-D 67, 138, 158, 173

CHR$ (4) 67

in a string 67
CONTROL-S to stop listing 105
CONVERT 238
converting files 198
COUT1 159
CREATE 28, 40, 175, 205

creating an EXEC file using
BASIC 138

cross-reference listing 237

current position 91

DASH (-) command 49, 50, 148,
162, 178, 206
date, updating 226
DATETIME routine 161
debugging programs 68
deferred mode 9
DELETE 28, 43, 106, 176
deleting remarks 236
differences between DOS and
ProDOS 197
directory
file 14
line composition 227
DIRECTORY FULL (Code 17) 220
DISK FULL (Code 9) 218
disks
backingup 3
BASICS 198
ProDOS-formatted 198
displaying control characters 236
DOIT.EXEC 138
DOS 3.3 disk BASICS 198
DOS
and ProDOS
commands
improved 202
not supported by ProDOS 201
disks 197
DOS-ProDOS Conversion
Program 162, 198, 199
drive number option 23
DUPLICATE FILENAME
(Code 19) 221

10, 197

E

80-column

CAT 30

CATALOG 31

text 154

text card

turning off 79
elements 95

multiple 97
END OF DATA (Code 5) 215
equipment needed xviii, 3
error(s)

by ProDOS command 213
from Applesoft 211
messages 211

Index

example of STARTUP program 67
/EXAMPLES disk 3, 64, 65
catalog 33
/EXAMPLES/EXTRAS 225
/EXAMPLES/EXTRAS/
READ.DIRECTORY 227
EXEC
combining programs with 141
command 94, 135, 140,
142, 189
demonstration 136
filenames 135
files 135, 138
creating with BASIC 138
maker program 139
program 135, 141
EXEC.DEMO 136
EXIT 238
Extended 80-Column Text
Card 15,57

F

features of ProDOS 167
field 86, 92
file(s) 8, 14
BASIC.SYSTEM 64
binary 145, 147
buffer 105, 124
converting 198, 199
current position in 91
dates 36
HELP 65
HELPSCREENS 65
names 200
organization 200
PRODOS 64, 162
properties 36
sizes 35
STARTUP 64
types 35
abbreviations 35, 172
FILE BUSY (Code 20) 221
FILE LOCKED (Code 10) 218
FILE NOT OPEN(Code 18) 221
FILE(S) STILL OPEN (Code
21) 221
FILE TYPE MISMATCH (Code
13) 219
filename(s) 17, 35, 168
directory 34
maximum characters per
filename 168
filing commands 173
FLUSH 86, 111, 131, 188, 205

formatting a disk 13
with DOS command INIT 197
with ProDOS Filer 197
40-column
CAT 30
CATALOG 31
FP 201
FRE 73, 82, 184, 206, 207

GET 95
statement 99
GET.FRUIT 97
GET.TEXT 103, 137
graphics page, protecting 154

H

HELP 7, 8, 64, 69
selection screen 8
HELPSCREENS 8, 64
hexadecimal 238
notation 22
HGR 154, 206
HGR2 154, 206
high-resolution
graphics

screen 149

with ProDOS 154
pictures 148, 152
HIMEM 154, 206, 228, 233
HOLD 233

identifier 105
immediate mode 9, 229
improved DOS commands 202
IN# 63,73, 81, 146, 183, 203, 207
INIT 201
INPUT 95, 207
limitations 99
installing machine-language
routines 154
INT 201
integer
array 237
variable 237
Integer BASIC 49, 61
INTERLEAVED OR DUPLICATE
LINE NUMBER 230, 232
INVALID OPTION (Code 11) 218
I1/0 ERROR (Code 8) 217
1/0 from BASIC programs 73

J, K
KEYIN 159

Index

L

LENGTH 237
line numbering, automatic
229-230

listing
BASIC program to a file 140
/EXAMPLES directory 226
programto a file 94

LISTING.EXEC 140

LISTSELF 93

LOAD 50, 54, 179

LOCK 28, 44, 177

logical end of file 174

M

MACHINE LANGUAGE

POKER 141
machine language 145
programs 148, 157
routines 152, 154

to BASIC 141
MAKE.DOIT 138
MAKE.FRUIT 96
MAKE.TEXT 101, 129, 139
MANUAL 230
MAXFILES 201
maximum

file sizes 36

files per volume directory 167
length for

partial pathname 168
prefix 169
megabytes

per file 167

per volume 167
number of open files 167

record

number 126
size 117
memory

addresses 148
options 148, 150

locations 148

for error handling 70
MERGE 233
MON 202
Monitor 211
commands 142
program 160
monitor

input link 159
output link 159
prompt 160
multiple elements per field 97

new ProDOS commands 204
NO BUFFERS AVAILABLE
(Code 12) 218
NO DEVICE PROTECTED
(Code 4) 215
NO HOLD FILE 236
NOHELP 10
NOMON 202
NOSHOW 236
NOT DIRECT COMMAND
(Code 15) 220
notation 22
alternate options 22
NOTRACE 68, 207

ONERR.DEMO 71
ONERR GOTO 70, 104, 211
disabled 72
problems 72
OPEN 85, 93, 105, 124, 184, 203
options 21, 32, 41, 42
APPEND 110, 129
BLOAD 152
BRUN 151
BSAVE 155

CAT 32
CATALOG 32
CHAIN 74
CLOSE 108, 125
CREATE 41, 42
DASH (-) 51
DELETE 44

EXEC 142

FLUSH 111, 131
IN# 81

LOAD 54

LOCK 45

OPEN 106, 124
POSITION 112, 132
PR# 80

READ 109, 128
RESTORE 76
RUN 53

SAVE 56
UNLOCK 46
WRITE 108, 126

PART1 74

PART2 74,75

partial pathnames 18, 20

PATH NOT FOUND
(Codeb6or7) 217

Index

pathname(s) 18, 168
formation 24
maximum length 168
option 22
partial 18, 20
POKER.EXEC 141
POSITION 86, 112, 131, 188, 204
position-in-the-file 91
PR# 63, 73, 78, 146, 157, 182,
203, 207
PR#O 157
prefix 18, 28, 168, 174, 205
PREFIX 20
without options 70
PRINT 95
printer 78
printing to a text file 95
ProDOS
and DOS, differences 10
BASIC 162
command(s)
from keyboard 173
in programs 173
new 204
options 169
summary 27
using files 27
within a BASIC program 67
starting 4
BASIC Programming Examples
disk xvii, 3
Date and Time locations 161
error(s) 214
codes 212
handling 70
Filer 27,50, 52, 65, 162
files 65
input routines 159
output routines 159
startup disk, creating 64
text files 85
User’s Disk xvii, 3
ProDOS-formatted disks 198
program(s)
APA 227-238
Applesoft Programmer’s
Assistant 227-238
CONVERT 10
ESP. 77
/EXAMPLES/PROGRAMS
/ONERR.DEMO 71
MAKE.TEXT 110
to enter text from
keyboard 101
toread text 103

PROGRAM TOO LARGE
(Code 14) 220
programming with ProDOS,
overview 61
protecting the graphics page 154

Q

Quit command 162

R

RAM 15,57
random-access text files
91, 115, 118

RANGE ERROR (Code 2) 214
READ 86, 109, 117, 186, 204
READ.DIRECTORY 225
reading

from a text file 96

from ProDOS directories 226

records 121
records 90

length 116
reentering BASIC 161
remarks, deleting 236
RENAME 28, 42, 176
RENUMBER 230
renumbering a program 230
RESTORE 62, 75, 76, 182, 205
RUN 50, 52, 178, 204

without filename 57

S

sample program 118
SAVE 50, 55, 180
sequential text files 87, 90, 91,
92, 94, 135

creating 93
SHOW 236
SHOWOFF.EXEC 137
SHOWOFF file 137
slot number option 23
SOS, compatibility 167
SOS-formatted disks 13
standard

input routine 159

output routine 159
starting

ProDOS BASIC 4

system programs 162
STARTUP 65, 65, 67
startup

disks 64

drive 64
STORE 62, 73, 75, 181, 205
storing characters in fields 93

88, 90,

Index

string 237

array 237

structure, random-access text
files 115

subroutines 100

summary
of options 170
of ProDOS 167
suppressing control
characters 236
syntax 20, 169
SYNTAX ERROR (Code 16) 220
SYS file type 162
system date and time,
updating 226
system programs 50, 145, 162

T

TEXT 154, 206
text file(s)
commands 184
random-access 115
sequential 87, 90, 91,
92, 94, 135
creating 93
Thunderclock 161
TIME 161, 225
time, updating 226
tokens 153
TRACE 68, 207
transferring
binary information 148
non-binary files 152
,Ttype 153, 172
turning off the 80-column text
card 79

U

UNLOCK 28, 46, 177

updating system date and
time 226

/USERS.DISK 51

User’s Disk xvii, 3

v

volume directory 15

w

WRITE 86, 108, 116, 126, 186,
204

X

XREF 237
XXX.SYSTEM 162

Y, Z

\
|
E

raddy %|

?VE

\ w

I ﬁugluwFJBOJd Dl

Tuck end flap
inside back cover
when using manual.

SOQoid H*

apple computear

= :
20525 Mariani Avenue
Cupertino, California 95014

(408) 996-1010
TLX 171-576

030-0362-A

	BASIC Programming With ProDOS

	Table of Contents

	List of Figures, Tables, and Programs

	Preface

	Chapter 1: Introduction

	Chapter 2: Files and Commands

	Chapter 3: Using Files

	Chapter 4: BASIC Programs in Files

	Chapter 5: Programming With ProDOS

	Chapter 6: Text in Files

	Chapter 7: Random-Access Text Files

	Chapter 8: EXEC: Control From a Text File

	Chapter 9: Binary Files

	Appendix A: Summary of ProDOS
	Appendix B: DOS, ProDOS, and Applesoft

	Appendix C: Error Messages

	Appendix D: Extras

	Glossary

	Index

